zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of a new fractional-order hyperchaotic system. (English) Zbl 1231.34091
Summary: In this letter, a new fractional-order hyperchaotic system is proposed. By utilizing the fractional calculus theory and computer simulations, it is found that hyperchaos exists in the new fractional-order four-dimensional system with order less than 4. The lowest order to have hyperchaos in this system is 2.88. The results are validated by the existence of two positive Lyapunov exponents. Using the pole placement technique, a nonlinear state observer is designed to synchronize a class of nonlinear fractional-order systems. The observer method is used to synchronize two identical fractional-order hyperchaotic systems. In addition, the active control technique is applied to synchronize the new fractional-order hyperchaotic system and the fractional-order Chen hyperchaotic system. The two schemes, based on the stability theory of the fractional-order system, are rather simple, theoretically rigorous and convenient to realize synchronization. They do not require the computation of the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the proposed synchronization schemes.
MSC:
34D06Synchronization
34K37Functional-differential equations with fractional derivatives
34C28Complex behavior, chaotic systems (ODE)
34H10Chaos control (ODE)
34D08Characteristic and Lyapunov exponents
References:
[1]Podlubny, I.: Fractional differential equations, (1999)
[2]Hifer, R.: Applications of fractional calculus in physics, (2001)
[3]Koeller, R. C.: J. appl. Mech., J. appl. Mech. 51, 299 (1984)
[4]Heaviside, O.: Electromagnetic theory, (1971)
[5]Levie, R. De.: J. electroanal. Chem., J. electroanal. Chem. 281, 1 (1990)
[6]Westerlund, S.: Phys. scr., Phys. scr. 43, 174 (1991)
[7]El-Sayed, A. M. A.: Int. J. Theor. phys., Int. J. Theor. phys. 35, 311 (1996)
[8]Ichise, M.; Nagayanagi, Y.; Kojima, T.: J. electroanal. Chem., J. electroanal. Chem. 33, 253 (1971)
[9]Chen, G.; Friedman, G.: IEEE trans. Comput. aided des. Integr. circuits syst., IEEE trans. Comput. aided des. Integr. circuits syst. 24, 170 (2005)
[10]Jenson, V. G.; Jeffreys, G. V.: Mathematical methods in chemical engineering, (1977)
[11]A. Oustaloup, From fractality to non integer derivation through recursivity, a property common to these two concepts: A fundamental idea for a new process control strategy, in: Proceeding of the 12th IMACS World Congress, Paris, 1988, vol. 3, pp. 203 – 208
[12]Laskin, N.: Physica A, Physica A 287, 482 (2000)
[13]Oustaloup, A.: La dérivation non entière: théorie, synthèse et applications, (1995) · Zbl 0864.93004
[14]Mandelbrot, B.; Van Ness, J. W.: SIAM rev., SIAM rev. 10, 422 (1968)
[15]Podlubny, I.: IEEE trans. Automat. control, IEEE trans. Automat. control 44, 208 (1999)
[16]Hartley, T. T.; Lorenzo, C. F.: Nonlinear dyn., Nonlinear dyn. 29, 201 (2002)
[17]Li, C. P.; Peng, G. J.: Chaos solitons fractals, Chaos solitons fractals 22, 443 (2004)
[18]Wu, X.; Lu, Y.: Nonlinear dyn., Nonlinear dyn. (2008)
[19]Li, C. G.; Chen, G.: Phys. A, Phys. A 341, 55 (2004)
[20]Deng, W.; Li, C. P.: Physica A, Physica A 353, 61 (2005)
[21]Ge, Z. M.; Zhang, A. R.: Chaos solitons fractals, Chaos solitons fractals 32, 1791 (2007)
[22]Gao, T.; Chen, Z.; Yuan, Z.; Yu, D.: Chaos solitons fractals, Chaos solitons fractals 33, 922 (2007)
[23]Li, C. G.; Liao, X. X.; Yu, J. B.: Phys. rev. E, Phys. rev. E 68, 067203 (2003)
[24]Zhou, T. S.; Li, C. P.: Phys. D, Phys. D 212, 111 (2005)
[25]Gao, X.; Yu, J. B.: Chaos solitons fractals, Chaos solitons fractals 26, 141 (2005)
[26]Lu, J. G.: Chaos solitons fractals, Chaos solitons fractals 26, 1125 (2005)
[27]Peng, G.; Jiang, Y.; Chen, F.: Phys. A, Phys. A 387, 3738 (2008)
[28]Peng, G.; Jiang, Y.: Phys. lett. A, Phys. lett. A 372, 3963 (2008)
[29]Yan, J. P.; Li, C. P.: Chaos solitons fractals, Chaos solitons fractals 32, 725 (2007)
[30]Caputo, M.: Geophys. J. R. astron. Soc., Geophys. J. R. astron. Soc. 13, 529 (1967)
[31]Samko, S. G.; Klibas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[32]Keil, F.; Mackens, W.; Werther, J.: Scientific computing in chemical engineering II – computational fluid dynamics, reaction engineering, and molecular properties, (1999)
[33]Butzer, P. L.; Westphal, U.: An introduction to fractional calculus, (2000) · Zbl 0987.26005
[34]Charef, A.; Sun, H. H.; Tsao, Y. Y.; Onaral, B.: IEEE trans. Automat. control, IEEE trans. Automat. control 37, 1465 (1992)
[35]Ahmad, W. M.; Sprott, J. C.: Chaos solitons fractals, Chaos solitons fractals 16, 339 (2003)
[36]Diethelm, K.; Trans, Elec.: Numer. anal., Numer. anal. 5, 1 (1997)
[37]Diethelm, K.; Ford, N. J.; Freed, A. D.: Nonlinear dyn., Nonlinear dyn. 29, 3 (2002)
[38]Diethelm, K.; Ford, N. J.: J. math. Anal. appl., J. math. Anal. appl. 265, 229 (2002)
[39]Diethelm, K.; Ford, N. J.; Freed, A. D.: Numer. algorithms, Numer. algorithms 36, 31 (2004)
[40]Chen, G.; Ueta, T.: Int. J. Bifur. chaos, Int. J. Bifur. chaos 9, 1465 (1999)
[41]Wolf, A.; Swinney, J. B.; Swinney, H. L.; Vastano, J. A.: Phys. D, Phys. D 16, 285 (1985)
[42]D. Matignon, Stability results for fractional differential equations with applications to control processing, in: IEEE-SMC Proceedings, Computational Engineering in Systems and Application Multi-Conference, vol. 2, IMACS, Lille, France, July 1996, pp. 963 – 968
[43]Chen, C. T.: Linear system theory and design, (1984)
[44]Bai, E. W.; Lonngren, K. E.: Chaos solitons fractals, Chaos solitons fractals 11, 1041 (2000)