zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of an HIV pathogenesis model with cure rate. (English) Zbl 1231.34094
Summary: We consider an HIV pathogenesis model including cure rate and the full logistic proliferation term of CD4 + T cells in healthy and infected populations. Let N be the number of virus released by each productive infected CD4 + T cell. The critical number that ensures the existence of the positive equilibrium is obtained. We further show that if , then there exists a unique uninfected equilibrium point E 0 that is locally asymptotically stable. If , then the system is persistent and the only infected steady state E * is globally asymptotically stable in the feasible region. Numerical simulations are presented to illustrate the obtained main results. Moreover, we find that there exist periodic solutions when the infected steady state E * is unstable.
34D23Global stability of ODE
34C11Qualitative theory of solutions of ODE: growth, boundedness
[1]Gao, S. J.; Teng, Z. D.; Nieto, J. J.; Torres, A.: Analysis of an SIR epidemic model with pulse vaccination and distributed time delay, Journal of biomedicine and biotechnology 2007 (2007)
[2]Cai, L. M.; Li, X. Z.; Ghoshc, M.; Guo, B. Z.: Stability analysis of an HIV/AIDS epidemic model with treatment, Journal of computational and applied mathematics 229, 313-323 (2009) · Zbl 1162.92035 · doi:10.1016/j.cam.2008.10.067
[3]Samanta, G. P.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Nonlinear analysis: real world applications 12, 1163-1177 (2011) · Zbl 1203.92051 · doi:10.1016/j.nonrwa.2010.09.010
[4]Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271, 1582-1586 (1996)
[5]Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, Journal of theoretical biology 184, 203-217 (1997)
[6]Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A.: Virus dynamics and drug therapy, Proceedings of national Academy of sciences of the united states of amercia 94, 6971-6976 (1997)
[7]Stafford, M. A.; Corey, L.; Cao, Y. Z.; Daar, E. S.; Ho, D. D.; Perelson, A. S.: Modeling plasma virus concentration during primary HIV infection, Journal of theoretical biology 203, 285-293 (2000)
[8]Yu, Y. M.; Nieto, J. J.; Torres, A.; Wang, K. F.: A viral infection model with a nonlinear infection rate, Boundary value problems 2009 (2009) · Zbl 1187.34062 · doi:10.1155/2009/958016
[9]Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay, Journal of mathematical analysis and applications 375, 75-81 (2011) · Zbl 1222.34101 · doi:10.1016/j.jmaa.2010.08.055
[10]Elaiw, A. M.: Global properties of a class of HIV models, Nonlinear analysis: real world applications 11, 2253-2263 (2010) · Zbl 1197.34073 · doi:10.1016/j.nonrwa.2009.07.001
[11]Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373, 117-122 (1995)
[12]Sachsenberg, N.; Perelson, A. S.; Yerly, S.; Schockmel, G. A.; Leduc, D.; Hirschel, B.; Perrin, L.: Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by ki-67 antigen, The journal of experimental medicine 187, 1295-1303 (1998)
[13]Perelson, A. S.; Nelson, P. W.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM review 41, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[14]Leenheer, P. D.; Smith, H. L.: Virus dynamics: a global analysis, SIAM journal on applied mathematics 63, 1313-1327 (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[15]Song, X. Y.; Neumann, A. U.: Global stability and periodic solution of the viral dynamics, Journal of mathematical analysis and applications 329, 281-297 (2007) · Zbl 1105.92011 · doi:10.1016/j.jmaa.2006.06.064
[16]Wang, L. C.; Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Mathematical biosciences 200, 44-57 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[17]Wang, X.; Song, X. Y.: Global stability and periodic solution of a model for HIV infection of CD4+ T cells, Applied mathematics and computation 189, 1331-1340 (2007) · Zbl 1117.92040 · doi:10.1016/j.amc.2006.12.044
[18]Culshaw, R. V.; Ruan, S. G.: A delay-differential equation model of HIV infection of CD4+ T-cells, Mathematical biosciences 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[19]Leonard, R.; Zagury, D.; Bernard, J.; Zagury, J. F.; Gallo, R. C.: Cytopathic effect of human immunodeficiency virus in T4 cells is linked to the last stage of virus infection, Proceedings of national Academy of sciences of the united states of amercia 85, 3570-3574 (1988)
[20]Wodarz, D.; Hamer, D. H.: Infection dynamic in HIV-specific CD4+ T cells, Mathematical biosciences 209, 14-29 (2007)
[21]Wang, L. C.; Ellermeyer, S.: HIV infection and CD4+ T cell dynamics, Discrete and continuous dynanmical system 6, 1417-1430 (2006) · Zbl 1123.92033 · doi:10.3934/dcdsb.2006.6.1381
[22]Cai, L. M.; Li, X. Z.: Stability of Hopf bifurcation in a delayed model for HIV infection of CD4+ T-cells, Chaos, solitons & fractals 42, 1-11 (2009)
[23]Hu, Z. X.; Liu, X. D.; Wang, H.; Ma, W. B.: Analysis of the dynamics of a delayed HIV pathogenesis model, Journal of computational and applied mathematics 234, 461-476 (2010) · Zbl 1185.92062 · doi:10.1016/j.cam.2009.12.038
[24]Guidotti, L. G.; Rochford, R.; Chung, J.; Shapiro, M.; Purcell, R.; Chisari, F. V.: Viral clearance without destruction of infected cells during acute HBV infection, Science 284, 825-829 (1999)
[25]Lewin, S.; Walters, T.; Locarnini, S.: Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies, Antiviral research 35, 381-396 (2002)
[26]Wang, K. F.; Fan, A. J.; Torres, A.: Global properties of an improved hepatitis B virus model, Nonlinear analysis: real world applications 11, 3131-3138 (2010) · Zbl 1197.34081 · doi:10.1016/j.nonrwa.2009.11.008
[27]Zhou, X. Y.; Song, X. Y.; Shi, X. Y.: A differential equation model of HIV infection of CD4+ T-cells with cure rate, Journal of mathematical analysis and applications 342, 1342-1355 (2008) · Zbl 1188.34062 · doi:10.1016/j.jmaa.2008.01.008
[28]Zack, J. A.; Arrigo, S. J.; Weitsman, S. R.; Go, A. S.; Haislip, A.; Chen, I. S.: HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile latent viral structure, Cell 61, 213-222 (1990)
[29]Zack, J. A.; Haislip, A. M.; Krogstad, P.; Chen, I. S.: Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral cycle, Journal of virology 66, 1717-1725 (1992)
[30]Essunger, P.; Perelson, A. S.: Modeling HIV infection of CD4+ T-cell subpopulations, Journal of theoretical biology 170, 367-391 (1994)
[31]Srivastava, P. K.; Chandra, P.: Modeling the dynamics of HIV and CD4+ T cells during primary infection, Nonlinear analysis: real world applications 11, 612-618 (2010) · Zbl 1181.37122 · doi:10.1016/j.nonrwa.2008.10.037
[32]Hale, J. K.; Waltman, P.: Persistence in infinite-dimensional systems, SIAM journal on mathematical analysis 20, 388-395 (1989) · Zbl 0692.34053 · doi:10.1137/0520025
[33]Li, M. Y.; Muldowney, J. S.: A geometric approach to the global stability problems, SIAM journal on mathematical analysis 27, 1070-1083 (1996) · Zbl 0873.34041 · doi:10.1137/S0036141094266449
[34]Muldowney, J. S.: Compound matrices and ordinary differential equations, Rocky mountain journal of mathematics 20, 857-872 (1990)
[35]Fiedler, M.: Additive compound matrices and inequality for eigenvalues of stochastic matrices, Czechoslovak mathematical journal 99, 392-402 (1974) · Zbl 0345.15013
[36]Coppel, W. A.: Stability and asymptotic behavior of differential equations, (1965) · Zbl 0154.09301
[37]Butler, G. J.; Waltman, P.: Persistence in dynamical system, Journal of differential equations 63, 255-263 (1986) · Zbl 0603.58033 · doi:10.1016/0022-0396(86)90049-5
[38]Waltman, P.: A brief survey of persistence, Delay differential equations and dynamical systems 1475, 31-40 (1991) · Zbl 0756.34054
[39]Jr, R. H. Martin: Logarithmic norms and projections applied to linear differential systems, Journal of mathematical analysis and applications 45, 432-442 (1974) · Zbl 0293.34018 · doi:10.1016/0022-247X(74)90084-5