zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on Hopf bifurcations in a delayed diffusive Lotka-Volterra predator-prey system. (English) Zbl 1231.35096
Summary: The diffusive Lotka-Volterra predator-prey system with two delays is reconsidered here. The stability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations, and our results complement earlier ones. We also obtain that in a special case, a Hopf bifurcation of spatial inhomogeneous periodic solutions occurs in the system.
35K51Second-order parabolic systems, initial bondary value problems
35Q92PDEs in connection with biology and other natural sciences
37N25Dynamical systems in biology
92D25Population dynamics (general)
35B10Periodic solutions of PDE
35B32Bifurcation (PDE)
35B35Stability of solutions of PDE
35K91Semilinear parabolic equations with Laplacian, bi-Laplacian or poly-Laplacian
[1]Wu, J.: Theory and applications of partial functional-differential equations, (1996)
[2]Yan, X.: Stability and Hopf bifurcation for a delayed prey–predator system with diffusion effects, Appl. math. Comput. 192, 137-150 (2007) · Zbl 1193.35098 · doi:10.1016/j.amc.2007.03.033
[3]Erneux, T.: Applied delay differential equations, Surveys and tutorials in the applied mathematical sciences 3 (2009)
[4]Davidson, F. A.; Gourley, S. A.: The effects of temporal delays in a model for a food-limited, diffusing population, J. math. Anal. appl. 261, 633-648 (2001) · Zbl 0992.35047 · doi:10.1006/jmaa.2001.7563
[5]Faria, T.: Hopf bifurcation for a delayed predator–prey model and the effect of diffusion, Progr. nonlinear differential equations appl. 43, 257-268 (2001) · Zbl 0994.34062
[6]Ge, Z.; He, Y.: Diffusion effect and stability analysis of a predator–prey system described by a delayed reaction–diffusion equations, J. math. Anal. appl. 339, 1432-1450 (2008) · Zbl 1132.35087 · doi:10.1016/j.jmaa.2007.07.060
[7]Yan, X.; Zhang, C.: Asymptotic stability of positive equilibrium solution for a delayed prey–predator diffusion system, Applied mathematical modelling 34, 184-199 (2010) · Zbl 1185.35121 · doi:10.1016/j.apm.2009.03.040
[8]Ge, Z.; He, Y.: Traveling wavefronts for a two-species predator–prey system with diffusion terms and stage structure, Applied mathematical modelling 33, 1356-1365 (2009)
[9]Yi, T.; Zou, X.: Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case, J. differential equations 245, 3376-3388 (2008) · Zbl 1152.35511 · doi:10.1016/j.jde.2008.03.007
[10]Hu, G.; Li, W.: Hopf bifurcation analysis for a delayed predator–prey system with diffusion effects, Nonl. anal. Real world appl. 11, 819-826 (2010) · Zbl 1181.37119 · doi:10.1016/j.nonrwa.2009.01.027
[11]Hale, J. K.; Verduyn, L.; Sjoerd, M.: Introduction to functional-differential equations, Applied mathematical sciences 99 (1993) · Zbl 0787.34002
[12]Busenberg, S.; Huang, W.: Stability and Hopf bifurcation for a population delay model with diffusion effects, J. differential equations 124, 80-107 (1996) · Zbl 0854.35120 · doi:10.1006/jdeq.1996.0003
[13]Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion, J. math. Anal. appl. 254, No. 2, 433-463 (2001) · Zbl 0973.35034 · doi:10.1006/jmaa.2000.7182
[14]Su, Y.; Wei, J.; Shi, J.: Hopf bifurcations in a reaction–diffusion population model with delay effect, J. differential equations 247, 1156-1184 (2009) · Zbl 1203.35029 · doi:10.1016/j.jde.2009.04.017
[15]Thieme, H.; Zhao, X.: A non-local delayed and diffusive predator–prey model, Nonl. anal. Real world appl. 2, 145-160 (2001) · Zbl 1113.92319 · doi:10.1016/S0362-546X(00)00112-7
[16]Wang, Y.: Asymptotic behavior of solutions for a class of predator–prey reaction–diffusion systems with time delays, J. math. Anal. appl. 328, 137-150 (2007) · Zbl 1112.35106 · doi:10.1016/j.jmaa.2006.05.020
[17]Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[18]So, J. W. -H.; Yang, Y.: Dirichlet problem for the diffusive Nicholson’s blowflies equation, J. differential equations 150, 317-348 (1998) · Zbl 0923.35195 · doi:10.1006/jdeq.1998.3489
[19]Su, Y.; Wei, J.; Shi, J.: Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation, Nonlinear anal. Real world appl. 11, 1692-1703 (2010) · Zbl 1191.35046 · doi:10.1016/j.nonrwa.2009.03.024
[20]So, J. W. -H.; Wu, J.; Yang, Y.: Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation, Appl. math. Comput. 111, 33-51 (2000) · Zbl 1028.65138 · doi:10.1016/S0096-3003(99)00063-6