zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Using reproducing kernel for solving a class of partial differential equation with variable-coefficients. (English) Zbl 1231.41019
Summary: How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.
MSC:
41A30Approximation by other special function classes
References:
[1]Cui Minggen, Deng Zhongxing. On the best operator of interplation[J]. Math Nu merica Sinica, 1986, 8(2):209–216.
[2]Cui Minggen, Geng Fazhan. Solving singular two point boundary value problems in reproducing kernel space[J]. Journal of Computational and Applied Mathematics, 2007, 205(1):6–15. · Zbl 1149.65057 · doi:10.1016/j.cam.2006.04.037
[3]Yao Huanmin, Cui Minggen. A new algorithm for a class of singular boundary value problems[J]. Applied Mathematics and Computation, 2007, 186(2):1183–1191. · Zbl 1175.65085 · doi:10.1016/j.amc.2006.07.157
[4]Cui Minggen, Chen Zhong. How to solve nonlinear operator equation A(ν 2)+C(ν) = f[J]. Applied Mathematics and Computation, 2004, 153(2):403–416. · Zbl 1065.47072 · doi:10.1016/S0096-3003(03)00641-6
[5]Li Chunli, Cui Minggen. How to solve the equation AuBu + Cu = f[J]. Applied Mathematics and Computation, 2002, 133(2–3):643–653. · Zbl 1051.47009 · doi:10.1016/S0096-3003(01)00264-8
[6]Cui Minggen, Geng Fazhan. A computational method for solving one-dimensional variable-coefficient Burgers equation[J]. Applied Mathematics and Computation, 2007, 188(2):1389–1401. · Zbl 1118.35348 · doi:10.1016/j.amc.2006.11.005
[7]Du Hong, Cui Minggen. Representation of the exact solution and a stability analysis on the Fredholm integral equation of the first kind in reproducing kernel space[J]. Applied Mathematics and Computation, 2006, 182(2):1608–1614. · Zbl 1108.65126 · doi:10.1016/j.amc.2006.05.049
[8]Cui Minggen, Du Hong. Representation of exact solution for the nonlinear Volterra-Fredholm integral equations[J]. Applied Mathematics and Computation, 2006, 182(2):1795–1802. · Zbl 1110.45005 · doi:10.1016/j.amc.2006.06.016
[9]Du Hong, Cui Minggen. Approximate solution of the Fredholm integral equation of the first kind in a reproducing kernel Hilbert space[J]. Applied Mathematics Letters (in press), doi:10.1016/j.aml.2007.07.014.
[10]Yang Lihong, Cui Minggen. New algorithm for a class of nonlinear integro-differential equations in the reproducing kernel space[J]. Applied Mathematics and Computation, 2006, 174(2):942–960. · Zbl 1094.65136 · doi:10.1016/j.amc.2005.05.026
[11]Aronszajn N. Theory of reproducing kernel[J]. Trans Amer Math Soc, 1950, 68:337–404. · doi:10.1090/S0002-9947-1950-0051437-7