zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On coincidence point and fixed point theorems for nonlinear multivalued maps. (English) Zbl 1231.54021
Summary: Several characterizations of ℳ𝒯-functions are first given in this paper. Applying the characterizations of ℳ𝒯-functions, we establish some existence theorems for coincidence points and fixed points in complete metric spaces. From these results, we can obtain new generalizations of Berinde-Berinde’s fixed point theorem and Mizoguchi-Takahashi’s fixed point theorem for nonlinear multivalued contractive maps. Our results generalize and improve some main results in the literature.
54H25Fixed-point and coincidence theorems in topological spaces
54C60Set-valued maps (general topology)
54E50Complete metric spaces
[1]Takahashi, W.: Nonlinear functional analysis, (2000) · Zbl 0997.47002
[2]Jr., S. B. Nadler: Multi-valued contraction mappings, Pacific J. Math. 30, 475-488 (1969) · Zbl 0187.45002
[3]Du, W. -S.: Some new results and generalizations in metric fixed point theory, Nonlinear anal. 73, 1439-1446 (2010) · Zbl 1190.54030 · doi:10.1016/j.na.2010.05.007
[4]Du, W. -S.: Coupled fixed point theorems for nonlinear contractions satisfied mizoguchi-takahashi’s condition in quasiordered metric spaces, Fixed point theory and applications 2010 (2010) · Zbl 1194.54061 · doi:10.1155/2010/876372
[5]Du, W. -S.: Nonlinear contractive conditions for coupled cone fixed point theorems, Fixed point theory and applications 2010 (2010) · Zbl 1220.54022 · doi:10.1155/2010/190606
[6]Berinde, M.; Berinde, V.: On a general class of multi-valued weakly Picard mappings, J. math. Anal. appl. 326, 772-782 (2007) · Zbl 1117.47039 · doi:10.1016/j.jmaa.2006.03.016
[7]Kamran, T.: Multivalued f-weakly Picard mappings, Nonlinear anal. 67, 2289-2296 (2007) · Zbl 1128.54024 · doi:10.1016/j.na.2006.09.010
[8]Berinde, V.; Păcurar, M.: Fixed points and continuity of almost contractions, Fixed point theory 9, 23-34 (2008) · Zbl 1152.54031
[9]Mizoguchi, N.; Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces, J. math. Anal. appl. 141, 177-188 (1989) · Zbl 0688.54028 · doi:10.1016/0022-247X(89)90214-X
[10]Reich, S.: Some problems and results in fixed point theory, Contemp. math. 21, 179-187 (1983) · Zbl 0531.47048
[11]Daffer, P. Z.; Kaneko, H.: Fixed points of generalized contractive multi-valued mappings, J. math. Anal. appl. 192, 655-666 (1995) · Zbl 0835.54028 · doi:10.1006/jmaa.1995.1194
[12]Suzuki, T.: Mizoguchi-takahashi’s fixed point theorem is a real generalization of nadler’s, J. math. Anal. appl. 340, 752-755 (2008) · Zbl 1137.54026 · doi:10.1016/j.jmaa.2007.08.022
[13]Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration, Nonlinear anal. Forum 9, 43-53 (2004) · Zbl 1078.47042
[14]W.-S. Du, S.-X Zheng, Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese J. Math., in press.
[15]Suzuki, T.: Fixed point theorems for berinde mappings, Bull. kyushu inst. Tech. pure appl. Math. 58, 13-19 (2011)