zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. (English) Zbl 1231.65090
Summary: Two new iterative methods are built up and analyzed. A generalization of the efficiency index used in the scalar case to several variables in iterative methods for solving systems of nonlinear equations is revisited. Analytic proofs of the local order of convergence based on developments of multilineal functions and numerical concepts that will be used to illustrate the analytic results are given. An approximation of the computational order of convergence is computed independently of the knowledge of the root and the necessary time to get one correct decimal is studied in our examples.
65H10Systems of nonlinear equations (numerical methods)
65Y20Complexity and performance of numerical algorithms
[1]Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204
[2]Grau, M.; Díaz-Barrero, J. L.: An improvement of the Euler–Chebyshev iterative method, J. math. Anal. appl. 315, 1-7 (2006) · Zbl 1113.65048 · doi:10.1016/j.jmaa.2005.09.086
[3]Grau-Sánchez, M.: Improvement of the efficiency of some three-step iterative like-Newton methods, Numer. math. 107, 131-146 (2007) · Zbl 1123.65037 · doi:10.1007/s00211-007-0088-8
[4]Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett. 13, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[5]Ostrowski, A. M.: Solutions of equations and system of equations, (1960) · Zbl 0115.11201
[6]Bailey, D. H.; Borwein, J. M.: High-precision computation and mathematical physics, (2008)
[7]Özban, A. Y.: Some new variants of Newton’s method, Appl. math. Lett. 17, 677-682 (2004)
[8]Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding, ACM trans. Math. software 33, No. 2 (2007)
[10]Grau-Sánchez, M.; Noguera, M.; Gutiérrez, J. M.: On some computational orders of convergence, Appl. math. Lett. 23, 472-478 (2010) · Zbl 1189.65092 · doi:10.1016/j.aml.2009.12.006
[11]Polyanin, A. D.; Manzhirov, A. V.: Handbook of integral equations, (1998)