zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A matrix-free quasi-Newton method for solving large-scale nonlinear systems. (English) Zbl 1231.65091
Summary: One of the widely used methods for solving a nonlinear system of equations is the quasi-Newton method. The basic idea underlining this type of method is to approximate the solution of Newton’s equation by means of approximating the Jacobian matrix via quasi-Newton update. Application of quasi-Newton methods for large scale problems requires, in principle, vast computational resource to form and store an approximation to the Jacobian matrix of the underlying problem. Hence, this paper proposes an approximation for Newton-step based on the update of approximation requiring a computational effort similar to that of matrix-free settings. It is made possible by approximating the Jacobian into a diagonal matrix using the least-change secant updating strategy, commonly employed in the development of quasi-Newton methods. Under suitable assumptions, local convergence of the proposed method is proved for nonsingular systems. Numerical experiments on popular test problems confirm the effectiveness of the approach in comparison with Newton’s, Chord Newton’s and Broyden’s methods.
MSC:
65H10Systems of nonlinear equations (numerical methods)
References:
[1]Jr., J. E. Dennis; Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations, (1983) · Zbl 0579.65058
[2]Kelley, C. T.: Iterative methods for linear and nonlinear equations, (1995)
[3]Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations, Math. comp. 19, 577-593 (1965) · Zbl 0131.13905 · doi:10.2307/2003941
[4]Broyden, C. G.: Quasi-Newton methods and their applications to function minimization, Math. comp. 21, 368-381 (1967) · Zbl 0155.46704 · doi:10.2307/2003239
[5]Wang, X.; Kou, J.; Gu, C.: A new modified secant-like method for solving nonlinear equations, Comput. math. Appl. 60, 1633-1638 (2010) · Zbl 1202.65064 · doi:10.1016/j.camwa.2010.06.045
[6]Thukral, R.: Introduction to a Newton-type method for solving nonlinear equations, Appl. math. Comput. 195, 663-668 (2008) · Zbl 1154.65034 · doi:10.1016/j.amc.2007.05.013
[7]Özban, A. Y.: Some new variants of Newton’s method, Appl. math. Lett. 17, 677-682 (2004)
[8]Hassan, M. A.; Leong, W. J.; Farid, M.: A new gradient method via quasi-Cauchy relation which guarantees descent, J. comput. Appl. math. 230, 300-305 (2009) · Zbl 1179.65067 · doi:10.1016/j.cam.2008.11.013
[9]Jr., J. E. Dennis; Schnabel, R. B.: Least change secant updates for quasi-Newton methods, SIAM rev. 21, 443-459 (1979) · Zbl 0424.65020 · doi:10.1137/1021091
[10]Dennis, J. E.; Wolkowicz, H.: Sizing and least change secant methods, SIAM J. Numer. anal. 30, 1291-1313 (1993) · Zbl 0802.65081 · doi:10.1137/0730067
[11]Broyden, C. G.; Dennis, J. E.; Morè, J. J.: On the local and superlinear convergence of quasi-Newton methods, J. inst. Math. appl. 12, 223-246 (1973) · Zbl 0282.65041 · doi:10.1093/imamat/12.3.223
[12]Lam, B.: On the convergence of a quasi-Newton method for sparse nonlinear systems, Math. comp. 32, 447-451 (1978) · Zbl 0385.65027 · doi:10.2307/2006157
[13]Gomes-Ruggiero, M. A.; Martínez, J. M.; Moretti, A. C.: Comparing algorithms for solving sparse nonlinear system of equation, SIAM J. Sci. comput. 13, 459-483 (1992) · Zbl 0752.65039 · doi:10.1137/0913025
[14]Liu, H.; Ni, Q.: Incomplete Jacobian Newton method for nonlinear equation, Comput. math. Appl. 56, 218-227 (2008) · Zbl 1145.65315 · doi:10.1016/j.camwa.2007.12.002
[15]Lukšan, L.: Inexact trust region method for large sparse systems of nonlinear equations, J. optim. Theory appl. 81, 569-590 (1994) · Zbl 0803.65071 · doi:10.1007/BF02193101