zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coupled common fixed point theorems for a pair of commuting mappings in partially ordered complete metric spaces. (English) Zbl 1231.65100
Summary: Our aim is to establish a coupled coincidence point for a pair of commuting mappings in partially ordered complete metric spaces. We also present a result on the existence and uniqueness of coupled common fixed points. An example is given to support the usability of our results.
MSC:
65J15Equations with nonlinear operators (numerical methods)
47H10Fixed point theorems for nonlinear operators on topological linear spaces
References:
[1]Banach, S.: Sur LES opérations dans LES ensembles absraites et leurs applications, Fund. math. 3, 133-181 (1922) · Zbl 48.0201.01
[2]Ran, A. C. M.; Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. amer. Math. soc. 132, No. 5, 1435-1443 (2004) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[3]Nieto, J. J.; Lopez, R. R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[4]Agarwal, R. P.; El-Gebeily, M. A.; O’regan, D.: Generalized contractions in partially ordered metric spaces, Appl. anal. 87, 1-8 (2008) · Zbl 1140.47042 · doi:10.1080/00036810701556151
[5]Bhaskar, T. G.; Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications, Nonlinear anal. 65, 1379-1393 (2006) · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017
[6]Lakshmikanthama, V.; Ćirić, Lj.B.: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear anal. 70, 4341-4349 (2009) · Zbl 1176.54032 · doi:10.1016/j.na.2008.09.020
[7]Altun, I.; Simsek, H.: Some fixed point theorems on ordered metric spaces and application, Fixed point theory appl. 2010 (2010) · Zbl 1197.54053 · doi:10.1155/2010/621469
[8]Amini-Harandi, A.; Emami, H.: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear anal. 72, No. 5, 2238-2242 (2010) · Zbl 1197.54054 · doi:10.1016/j.na.2009.10.023
[9]Ćirić, L.; Cakić, N.; Rajović, M.; Ume, J. S.: Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed point theory appl. 2008 (2008) · Zbl 1158.54019 · doi:10.1155/2008/131294
[10]Drici, Z.; Mcrae, F. A.; Devi, J. Vasundhara: Fixed point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear anal. 67, No. 2, 641-647 (2007) · Zbl 1127.47049 · doi:10.1016/j.na.2006.06.022
[11]Harjani, J.; Sadarangani, K.: Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear anal. 71, No. 7–8, 3403-3410 (2008) · Zbl 1221.54058 · doi:10.1016/j.na.2009.01.240
[12]Harjani, J.; Sadarangani, K.: Generalized contractions in partially ordered metric spaces and applications to ordianry differential equations, Nonlinear anal. 72, No. 3–4, 1188-1197 (2010) · Zbl 1220.54025 · doi:10.1016/j.na.2009.08.003
[13]Nashine, H. K.; Altun, I.: Fixed point theorems for generalized weakly contractive condition in ordered metric spaces, Fixed point theory appl. 2011 (2011) · Zbl 1213.54070 · doi:10.1155/2011/132367
[14]Nashine, H. K.; Samet, B.: Fixed point results for mappings satisfying (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces, Nonlinear anal. 74, 2201-2209 (2011) · Zbl 1208.41014 · doi:10.1016/j.na.2010.11.024
[15]Nashine, H. K.; Samet, B.; Vetro, C.: Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. comput. Modelling 54, 712-720 (2011) · Zbl 1225.54022 · doi:10.1016/j.mcm.2011.03.014
[16]Nieto, J. J.; Lopez, R. R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta math. Sinica, engl. Ser. 23, No. 12, 2205-2212 (2007) · Zbl 1140.47045 · doi:10.1007/s10114-005-0769-0
[17]O’regan, D.; Petrutel, A.: Fixed point theorems for generalized contractions in ordered metric spaces, J. math. Anal. appl. 341, No. 2, 1241-1252 (2008) · Zbl 1142.47033 · doi:10.1016/j.jmaa.2007.11.026
[18]Samet, B.: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear anal. 72, 4508-4517 (2010)
[19]Samet, B.; Yazidi, H.: Coupled fixed point theorems in partially ordered ϵ-chainable metric spaces, Tjmcs. 1, No. 3, 142-151 (2010)
[20]Shatanawi, W.: Partially ordered cone metric spaces and coupled fixed point results, Computers math. Appl. 60, 2508-2515 (2010) · Zbl 1205.54044 · doi:10.1016/j.camwa.2010.08.074
[21]Wu, Y.: New fixed point theorems and applications of mixed monotone operator, J. math. Anal. appl. 341, No. 2, 883-893 (2008) · Zbl 1137.47044 · doi:10.1016/j.jmaa.2007.10.063
[22]Wu, Y.; Liang, Z.: Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear anal. 65, No. 10, 1913-1924 (2006) · Zbl 1111.47049 · doi:10.1016/j.na.2005.10.045