zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fictitious domain finite element methods using cut elements. I: A stabilized Lagrange multiplier method. (English) Zbl 1231.65207
Summary: We propose a fictitious domain method where the mesh is cut by the boundary. The primal solution is computed only up to the boundary; the solution itself is defined also by nodes outside the domain, but the weak finite element form only involves those parts of the elements that are located inside the domain. The multipliers are defined as being element-wise constant on the whole (including the extension) of the cut elements in the mesh defining the primal variable. Inf-sup stability is obtained by penalizing the jump of the multiplier over element faces. We consider the case of a polygonal domain with possibly curved boundaries. The method has optimal convergence properties.
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N15Error bounds (BVP of PDE)
65N85Fictitious domain methods (BVP of PDE)
[1]Barbosa, H. J. C.; Hughes, T. J. R.: The finite element method with Lagrange multipliers on the boundary: circumventing the babuska – brezzi condition, Comput. meth. Mech. engrg. 85, No. 1, 109-128 (1991) · Zbl 0764.73077 · doi:10.1016/0045-7825(91)90125-P
[2]Béchet, E.; Moës, N.; Wohlmuth, B.: A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. Numer. meth. Engrg. 78, 931-954 (2009) · Zbl 1183.74259 · doi:10.1002/nme.2515
[3]Brezzi, F.; Gilardi, G.: Fundamentals of PDE for numerical analysis, Finite element handbook (1987)
[4]E. Burman, P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Department of Mathematical Sciences, Chalmers University of Technology, Preprint, 2010.
[5]E. Burman, P. Hansbo, Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems, IMA J. Numer. Anal., in press, doi:10.1093/imanum/drn081.
[6]Ern, A.; Guermond, J. -L.: Theory and practice of finite elements, Applied mathematical sciences 159 (2004)
[7]Girault, V.; Glowinski, R.: Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. Indust. appl. Math. 12, No. 3, 487-514 (1995) · Zbl 0843.65076 · doi:10.1007/BF03167240
[8]Hansbo, A.; Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. methods appl. Mech. engrg. 191, No. 47-48, 5537-5552 (2002) · Zbl 1035.65125 · doi:10.1016/S0045-7825(02)00524-8
[9]Haslinger, J.; Renard, Y.: A new fictitious domain approach inspired by the extended finite element method, SIAM J. Numer. anal. 47, No. 2, 1474-1499 (2009) · Zbl 1205.65322 · doi:10.1137/070704435
[10]Maury, B.: Numerical analysis of a finite element/volume penalty method, SIAM J. Numer. anal. 47, No. 2, 1126-1148 (2009) · Zbl 1191.65157 · doi:10.1137/080712799
[11]Moës, N.; Béchet, E.; Tourbier, M.: Imposing Dirichlet boundary conditions in the extended finite element method, Int. J. Numer. meth. Engrg. 67, 1641-1669 (2006) · Zbl 1113.74072 · doi:10.1002/nme.1675
[12]Nitsche, J.: Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abh. math. Sem. univ. Hamburg 36, 9-15 (1971) · Zbl 0229.65079 · doi:10.1007/BF02995904