zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Accurate recovery-based upper error bounds for the extended finite element framework. (English) Zbl 1231.74437
Summary: This paper introduces a recovery-type error estimator yielding upper bounds of the error in energy norm for linear elastic fracture mechanics problems solved using the extended finite element method (XFEM). The paper can be considered as an extension and enhancement of a previous work in which the upper bounds of the error were developed in a FEM framework. The upper bound property requires the recovered solution to be equilibrated and continuous. The proposed technique consists of using a recovery technique, especially adapted to the XFEM framework that yields equilibrium at a local level (patch by patch). Then a postprocess based on the partition of unity concept is used to obtain continuity. The result is a very accurate but only nearly-statically admissible recovered stress field, with small equilibrium defaults introduced by the postprocess. Sharp upper bounds are obtained using a new methodology accounting for the equilibrium defaults, as demonstrated by the numerical tests.
MSC:
74S05Finite element methods in solid mechanics
74R10Brittle fracture
65N15Error bounds (BVP of PDE)
References:
[1]Moës, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack growth without remeshing, Int. J. Numer. meth. Eng. 46, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[2]Melenk, J. M.; Babuška, I.: The partition of unity finite element method: basic theory and applications, Comput. meth. Appl. mech. Eng. 139, 289-314 (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[3]Karihaloo, B. L.; Xiao, Q. Z.: Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review, Comput. struct. 81, 119-129 (2003)
[4]Moës, N.; Gravouil, A.; Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets – part I: Mechanical model, Int. J. Numer. meth. Eng. 53, 2549-2568 (2002) · Zbl 1169.74621 · doi:10.1002/nme.429
[5]Gravouil, A.; Belytschko, T.; Moës, N.: Non-planar 3D crack growth by the extended finite element and level sets – part II: Level set update, Int. J. Numer. meth. Eng. 53, 2569-2586 (2002) · Zbl 1169.74621 · doi:10.1002/nme.429
[6]Chopp, D. L.; Sukumar, N.: Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method, Int. J. Eng. sci. 41, 845-869 (2003) · Zbl 1211.74199 · doi:10.1016/S0020-7225(02)00322-1
[7]Laborde, P.; Pommier, J.; Renard, Y.; Salaün, M.: High-order extended finite element method for cracked domains, Int. J. Numer. meth. Eng. 64, 354-381 (2005) · Zbl 1181.74136 · doi:10.1002/nme.1370
[8]Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B.: Improved implementation and robustness study of the X-FEM method for stress analysis around cracks, Int. J. Numer. meth. Eng. 64, 1033-1056 (2005) · Zbl 1122.74499 · doi:10.1002/nme.1386
[9]Strouboulis, T.; Copps, K.; Babuška, I.: The generalized finite element method, Comput. meth. Appl. mech. Eng. 190, 4081-4193 (2001) · Zbl 0997.74069 · doi:10.1016/S0045-7825(01)00188-8
[10]Xiao, Q. Z.; Karihaloo, B. L.: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, Int. J. Numer. meth. Eng. 66, 1378-1410 (2006) · Zbl 1122.74529 · doi:10.1002/nme.1601
[11]Tarancón, J. E.; Vercher, A.; Giner, E.; Fuenmayor, F. J.: Enhanced blending elements for XFEM applied to linear elastic fracture mechanics, Int. J. Numer. meth. Eng. 77, 126-148 (2009) · Zbl 1195.74199 · doi:10.1002/nme.2402
[12]Ainsworth, M.; Oden, J. T.: A posteriori error estimation in finite element analysis, (2000) · Zbl 1008.65076
[13]Bangerth, W.; Rannacher, R.: Adaptive finite element methods for differential equations, (2003)
[14]Zienkiewicz, O. C.; Zhu, J. Z.: A simple error estimation and adaptive procedure for practical engineering analysis, Int. J. Numer. meth. Eng. 24, 337-357 (1987) · Zbl 0602.73063 · doi:10.1002/nme.1620240206
[15]Zienkiewicz, O. C.; Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Part I: The recovery technique, Int. J. Numer. meth. Eng. 33, 1331-1364 (1992) · Zbl 0769.73084 · doi:10.1002/nme.1620330702
[16]Zienkiewicz, O. C.; Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Part II: Error estimates and adaptivity, Int. J. Numer. meth. Eng. 33, 1365-1382 (1992) · Zbl 0769.73085 · doi:10.1002/nme.1620330703
[17]Babuška, I.; Strouboulis, T.; Upadhyay, C. S.: A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. meth. Appl. mech. Eng. 114, 307-378 (1994)
[18]Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, J.; Copps, K.: Validation of a posteriori error estimators by numerical approach, Int. J. Numer. meth. Eng. 37, 1073-1123 (1994) · Zbl 0811.65088 · doi:10.1002/nme.1620370702
[19]Wiberg, N. E.; Abdulwahab, F.; Ziukas, S.: Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions, Int. J. Numer. meth. Eng. 37, 3417-3440 (1994) · Zbl 0825.73777 · doi:10.1002/nme.1620372003
[20]Ramsay, A. C. A.; Maunder, E. A. W.: Effective error estimation from continuous, boundary admissible estimated stress fields, Comput. struct. 61, 331-343 (1996) · Zbl 0900.73821 · doi:10.1016/0045-7949(96)00034-X
[21]Blacker, T.; Belytschko, T.: Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements, Int. J. Numer. meth. Eng. 37, 517-536 (1994) · Zbl 0789.73064 · doi:10.1002/nme.1620370309
[22]Xiao, Q. Z.; Karihaloo, B. L.: Statically admissible stress recovery using the moving least squares technique, Progress in computational structures technology, 111-138 (2004)
[23]Ródenas, J. J.; Tur, M.; Fuenmayor, F. J.; Vercher, A.: Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique, Int. J. Numer. meth. Eng. 70, 705-727 (2006) · Zbl 1194.74470 · doi:10.1002/nme.1903
[24]Ródenas, J. J.; Giner, E.; Tarancón, J. E.; González-Estrada, O. A.: A recovery error estimator for singular problems using singular+smooth field splitting, Proceedings of fifth international conference on engineering computational technology, fifth international conference on engineering computational technology (2006)
[25]Shih, C.; Asaro, R.: Elastic-plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding, J. appl. Mech. 8, 537-545 (1988)
[26]Yau, J.; Wang, S.; Corten, H.: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, J. appl. Mech. 47, 335-341 (1980) · Zbl 0463.73103 · doi:10.1115/1.3153665
[27]Díez, P.; Egozcue, J. J.; Huerta, A.: A posteriori error estimation for standard finite element analysis, Comput. meth. Appl. mech. Eng. 163, 141-157 (1998) · Zbl 0940.65116 · doi:10.1016/S0045-7825(98)00009-7
[28]Díez, P.; Parés, N.; Huerta, A.: Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates, Int. J. Numer. meth. Eng. 56, 1465-1488 (2003) · Zbl 1052.65105 · doi:10.1002/nme.620
[29]De Almeida, J. P. M.; Pereira, O. J. B.A.: Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems, Comput. methods appl. Mech. eng. 195, 279-296 (2006) · Zbl 1086.74041 · doi:10.1016/j.cma.2004.09.012
[30]Pereira, O. J. B.A.; De Almeida, J. P. M.; Maunder, E. A. W.: Adaptive methods for hybrid equilibrium finite element models, Comput. meth. Appl. mech. Eng. 176, 19-39 (1999) · Zbl 0991.74072 · doi:10.1016/S0045-7825(98)00328-4
[31]Díez, P.; Ródenas, J. J.; Zienkiewicz, O. C.: Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error, Int. J. Numer. meth. Eng. 69, 2075-2098 (2007) · Zbl 1194.74382 · doi:10.1002/nme.1837
[32]Strouboulis, T.; Zhang, L.; Wang, D.; Babuška, I.: A posteriori error estimation for generalized finite element methods, Comput. meth. Appl. mech. Eng. 195, 852-879 (2006) · Zbl 1119.65111 · doi:10.1016/j.cma.2005.03.004
[33]Bordas, S.; Duflot, M.; Le, P.: A simple error estimator for extended finite elements, Commun. numer. Meth. eng. 24, 961-971 (2008) · Zbl 1156.65093 · doi:10.1002/cnm.1001
[34]Bordas, S.; Duflot, M.: Derivative recovery and a posteriori error estimate for extended finite elements, Comput. meth. Appl. mech. Eng. 196, 3381-3399 (2007) · Zbl 1173.74401 · doi:10.1016/j.cma.2007.03.011
[35]Duflot, M.; Bordas, S.: A posteriori error estimation for extended finite element by an extended global recovery, Int. J. Numer. meth. Eng. 76, 1123-1138 (2008) · Zbl 1195.74171 · doi:10.1002/nme.2332
[36]Panetier, J.; Ladevèze, P.; Chamoin, L.: Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM, Int. J. Numer. meth. Eng. 81, 671-700 (2010) · Zbl 1183.74303 · doi:10.1002/nme.2705
[37]Ródenas, J. J.; González-Estrada, O. A.; Tarancón, J. E.; Fuenmayor, F. J.: A recovery type error estimator for the extended finite element method based on a singular+smooth stress field splitting, Int. J. Numer. meth. Eng. 76, 545-571 (2008) · Zbl 1195.74194 · doi:10.1002/nme.2313
[38]Kanninen, M. F.; Popelar, C. H.: Advanced fracture mechanics, (1985)
[39]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. meth. Eng. 45, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[40]Stolarska, M.; Chopp, D. L.; Moës, N.; Belytschko, T.: Modelling crack growth by level sets and the extended finite element method, Int. J. Numer. meth. Eng. 51, 943-960 (2001) · Zbl 1022.74049 · doi:10.1002/nme.201
[41]Banks-Sills, L.: Application of the finite element method to linear elastic fracture mechanics, Appl. mech. Rev. 44, 447-461 (1991)
[42]Li, F. Z.; Shih, C. F.; Needleman, A.: A comparison of methods for calculating energy release rates, Eng. fract. Mech. 21, 405-421 (1985)
[43]Calderón, G.; Díez, P.: Análisis de diferentes estimadores de error de postproceso para adaptatividad orientada al resultado, Métodos numéricos para cálculo y diseño en ingeniería 22, 193 (2006) · Zbl 1210.74162
[44]Giner, E.; Fuenmayor, F. J.; Baeza, L.; Tarancón, J. E.: Error estimation for the finite element evaluation of GI and GII in mixed-mode linear elastic fracture mechanics, Finite elem. Anal. des. 41, 1079-1104 (2005)