zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A characteristic stabilized finite element method for the non-stationary Navier-Stokes equations. (English) Zbl 1231.76151
The authors introduce a characteristic stabilized finite element scheme of the non-stationary Navier-Stokes equations for the lowest order pairs P 1 -P 0 or Q 1 -P 0 , and give some error estimates for both the continuous and fully discrete versions of the method under certain regularity assumptions on the solution.
76M10Finite element methods (fluid mechanics)
35Q30Stokes and Navier-Stokes equations
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
[1]Boukir K, Maday Y (1997) A high-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 25: 1421–1454 · doi:10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
[2]Douglas J, Thomas F, Russell T (1982) Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element of finite difference procedures. SIAM J Numer Anal 19(5): 871–885 · Zbl 0492.65051 · doi:10.1137/0719063
[3]Pironneau O (1982) On the transport-diffusion algorithm and its application to the Navier–Stokes equations. Numer Math 38: 309–332 · Zbl 0505.76100 · doi:10.1007/BF01396435
[4]Süli E (1998) Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer Math 53: 459–483 · Zbl 0637.76024 · doi:10.1007/BF01396329
[5]Baiocchi C, Brezzi F, Franca L (1993) Virtual bubbles and Galerkin-least-squares type methods. Comput Methods Appl Mech Eng 105(1): 125–141 · Zbl 0772.76033 · doi:10.1016/0045-7825(93)90119-I
[6]Douglas J, Wang J (1989) An absolutely stabilized finite element method for the Stokes problem. Math Comput 52: 495–508 · doi:10.1090/S0025-5718-1989-0958871-X
[7]Franca L, Hughes T (1993) Convergence analyses of Galerkin-least-squares methods for symmetric advectiveCdiffusive forms of the Stokes and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 105(2): 285–298 · Zbl 0771.76037 · doi:10.1016/0045-7825(93)90126-I
[8]Hughes T, Franca L, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the BabuskaCBrezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1): 85–99 · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[9]Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4): 173–199 · Zbl 1008.76036 · doi:10.1007/s10092-001-8180-4
[10]Codina R, Blasco J, Buscaglia G, Huerta A (2001) Implementation of a stabilized finite element formulation for the incompressible Navier–Stokes equations based on a pressure gradient projection. Int J Numer Methods Fluids 37(4): 419–444 · Zbl 1074.76032 · doi:10.1002/fld.182
[11]Silvester DJ (1994) Optimal low-order finite element methods for incompressible flow. Comput Methods Appl Mech Eng 111(3–4): 357–368 · Zbl 0844.76059 · doi:10.1016/0045-7825(94)90139-2
[12]Silvester DJ (1995) Stabilized mixed finite element methods. Numerical Analysis Report No. 262. Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester
[13]Pavel B, Bochev P, Dohrmann C, Gunzburger M (2006) Stabilized of low-order mixed finite element for the stokes equations. SIAM J Numer Anal 44(1): 82–101 · Zbl 1145.76015 · doi:10.1137/S0036142905444482
[14]Dohrmann C, Bochev P (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Methods Fluids 46(2): 183–201 · Zbl 1060.76569 · doi:10.1002/fld.752
[15]Li J, He Y (2008) A stabilized finite element method based on local polynomial pressure projection for the stationary Navier–Stokes equations. Appl Numer Math 58(10): 1503–1514 · Zbl 1155.35406 · doi:10.1016/j.apnum.2007.08.005
[16]Shang Y (2010) New stabilized finite element method for time-dependent incompressible flow problems. Int J Numer Methods Fluids 62(2): 166–187
[17]He Y (2003) A fully discrete stabilized finite-element method for the time dependent Navier–Stokes problem. IMA J Nume Anal 23: 665–691 · Zbl 1135.76331 · doi:10.1093/imanum/23.4.665
[18]He Y, Sun W (2007) Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math Comput 76(257): 115–136 · Zbl 1129.35004 · doi:10.1090/S0025-5718-06-01886-2
[19]Shan L, Hou Y (2009) A fully dicrete stabilized finite element method for the time-dependent Navier–Stokes equations. Appl Math Comput 215: 85–99 · Zbl 1172.76027 · doi:10.1016/j.amc.2009.04.037
[20]Chen Y, Luo Y, Feng M (2007) A stabilized characteristic finite-element methods for the non-stationary Navier–Stokes equation. Numer math J Chin Univ 29(4): 350–357
[21]Temam R (1984) Navier–Stokes equations: theory and numerical analysis. North-Holland, Amsterdam
[22]Heywood J, Rannacher R (1982) Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solution and second order error estimates for spatial discretization. SIAM Numer Anal 19: 275–311 · Zbl 0487.76035 · doi:10.1137/0719018
[23]Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations. Part 1, and 2. Int J Numer Methods Fluids 1: 17–43 · Zbl 0461.76021 · doi:10.1002/fld.1650010104
[24]Li J, HE Y (2008) A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J Comput Appl Math 214(1): 58–65 · Zbl 1132.35436 · doi:10.1016/j.cam.2007.02.015
[25]Achdou Y, Guermond JL (2000) Analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J Numerical Anal 37(3): 799–826 · Zbl 0966.76041 · doi:10.1137/S0036142996313580
[26]Girault V, Raviart P (1986) Finite element methods for Navier–Stokes equations. Springer, Berlin
[27]Shen J (1995) On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM Numer Anal 32(2): 386–403 · Zbl 0822.35008 · doi:10.1137/0732016
[28]Li J, HE Y, Chen Z (2007) A new stabilized finite element method for the transient Navier–Stokes equations. Comput Methods Appl Mech Eng 197(1): 22–35 · Zbl 1169.76392 · doi:10.1016/j.cma.2007.06.029