zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On some geometric properties of the generalized CES production functions. (English) Zbl 1231.91278
Summary: We prove that the generalized CES production function has constant return to scale if and only if the corresponding hypersurface is developable. Moreover, we establish that this production function has decreasing/increasing return to scale if and only if the corresponding hypersurface has positive/negative Gaussian curvature. These results are a generalization of some recent results concerning the generalized Cobb-Douglas production functions [G. E. Vîlcu, “A geometric perspective on the generalized Cobb-Douglas production functions”, Appl. Math. Lett. 24, 777–783, (2011)].
MSC:
91B38Production theory, theory of the firm (economics)
References:
[1]Arrow, K. J.; Chenery, H. B.; Minhas, B. S.; Solow, R. M.: Capital-labor substitution and economic efficiency, Rev. econ. Stat. 43, No. 3, 225-250 (1961)
[2]Do Carmo, M. P.: Differential geometry of curves and surfaces, (1976) · Zbl 0326.53001
[3]Cobb, C. W.; Douglas, P. H.: A theory of production, Am. econ. Rev. 18, 139-165 (1928)
[4]Ioan, C. A.: Applications of the space differential geometry at the study of production functions, Euroeconomica 18, 30-38 (2007)
[5]Fuss, M.; Mcfadden, D.; Mundlak, Y.: A survey of functional forms in the economic analysis of production, (1978)
[6]Kobayashi, S.; Nomizu, K.: Foundations of differential geometry, Foundations of differential geometry 2 (1969) · Zbl 0175.48504
[7]Losonczi, L.: Production functions having the CES property, Acta math. Acad. paedagog. Nyházi. (N.S.) 26, No. 1, 113-125 (2010) · Zbl 1224.62143
[8]Mcfadden, D.: Constant elasticity of substitution production functions, Rev. econ. Stud. 30, No. 2, 73-83 (1963)
[9]Mishra, S. K.: A brief history of production functions, IUP J. Manage. econ. 8, No. 4, 6-34 (2010)
[10]Shephard, R.: Theory of cost and production functions, (1970)
[11]Thompson, A.: Economics of the firm theory and practice, (1981)
[12]Uzawa, H.: Production functions with constant elasticities of substitution, Rev. econ. Stud. 29, No. 4, 291-299 (1962)
[13]Vîlcu, G. E.: A geometric perspective on the generalized cobb-Douglas production functions, Appl. math. Lett. 24, 777-783 (2011) · Zbl 1208.91076 · doi:10.1016/j.aml.2010.12.038
[14]Zakhirov, M.: Econometric and geometric analysis of cobb – Douglas and CES production functions, Romai j. 1, 237-242 (2005)