zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model. (English) Zbl 1231.91402
Summary: This paper focuses on the constant elasticity of variance (CEV) model for studying the optimal investment strategy before and after retirement in a defined contribution pension plan where benefits are paid under the form of annuities; annuities are supposed to be guaranteed during a certain fixed period of time. Using Legendre transform, dual theory and variable change technique, we derive the explicit solutions for the power and exponential utility functions in two different periods (before and after retirement). Each solution contains a modified factor which reflects an investor’s decision to hedge the volatility risk. In order to investigate the influence of the modified factor on the optimal strategy, we analyze the property of the modified factor. The results show that the dynamic behavior of the modified factor for the power utility mainly depends on the time and the investor’s risk aversion coefficient, whereas it only depends on the time in the exponential case.
91G10Portfolio theory
91G80Financial applications of other theories (stochastic control, calculus of variations, PDE, SPDE, dynamical systems)
93E20Optimal stochastic control (systems)
[1]Albrecht, P.; Maurer, R.: Self-annuitization, consumption shortfall in retirement and asset allocation: the annuity benchmark, Journal of pension economics and finance 1, 269-288 (2002)
[2]Black, F.; Scholes, M.: The pricing of options and corporate liabilities, Journal of political economy 81, 637-654 (1973)
[3]Blake, D.; Cairns, A. J. G.; Dowd, K.: Pensionmetrics: stochastic pension plan design and valute-at-risk during the accumulation phase, Insurance: mathematics economics 29, 187-215 (2001) · Zbl 0989.62057 · doi:10.1016/S0167-6687(01)00082-8
[4]Blake, D.; Cairns, A. J. G.; Dowd, K.: Pensionmetrics 2: stochastic pension plan design during the distribution phase, Insurance: mathematics economics 33, 29-47 (2003)
[5]Blomvall, J.; Lindberg, P. O.: Back-testing the performance of an actively managed option portfolio at the swedish stock market, 1990–1999, Journal of economic dynamic control 27, 1099-1112 (2003)
[6]Booth, P.; Yakoubov, Y.: Investment policy for defined contribution scheme members close to retirement: an analysis of the lifestyle concept, North American actuarial journal 4, 1-19 (2000) · Zbl 1083.91527
[7]Boulier, J. F.; Huang, S.; Taillard, G.: Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund, Insurance: mathematics economics 28, 173-189 (2001) · Zbl 0976.91034 · doi:10.1016/S0167-6687(00)00073-1
[8]Cox, J. C.; Ross, S. A.: The valuation of options for alternative stochastic processes, Journal of financial economics 4, 145-166 (1976)
[9]Cox, J. C.: The constant elasticity of variance option pricing model, The journal of portfolio management 22, 16-17 (1996)
[10]Davydov, D.; Linetsky, V.: The valuation and hedging of barrier and lookback option under the CEV process, Management science 47, 949-965 (2001)
[11]Deelstra, G.; Grasselli, M.; Koehl, P. F.: Optimal design of the guarantee for defined contribution funds, Journal of economic dynamics and control 28, 2239-2260 (2004) · Zbl 1202.91124 · doi:10.1016/j.jedc.2003.10.003
[12]Detemple, J.; Tian, W. D.: The valuation of American options for a class of diffusion processes, Management science 48, 917-937 (2002) · Zbl 1232.91660 · doi:10.1287/mnsc.48.7.917.2815
[13]Devolder, P.; Bosch, P. M.; Dominguez, F. I.: Stochastic optimal control of annuity contracts, Insurance: mathematics economics 33, 227-238 (2003)
[14]Gerrard, R.; Haberman, S.; Vigna, E.: Optimal investment choices post-retirement in a defined contribution pension scheme, Insurance: mathematics economics 35, 321-342 (2004) · Zbl 1093.91027 · doi:10.1016/j.insmatheco.2004.06.002
[15]Haberman, S.; Vigna, E.: Optimal investment strategies and risk measures in defined contribution pension schemes, Insurance: mathematics economics 31, 35-69 (2002) · Zbl 1039.91025 · doi:10.1016/S0167-6687(02)00128-2
[16]Hsu, Y. L.; Lin, T. I.; Lee, C. F.: Constant elasticity of variance (CEV) option pricing model: integration and detailed derivation, Mathematics and computer in simulation 79, 60-71 (2008) · Zbl 1144.91325 · doi:10.1016/j.matcom.2007.09.012
[17]Jones, C.: The dynamics of the stochastic volatility: evidence from underlying and options markets, Journal of econometrics 116, 181-224 (2003) · Zbl 1016.62122 · doi:10.1016/S0304-4076(03)00107-6
[18]Jonsson, M.; Sircar, R.: Optimal investment problems and volatility homogenization approximations, Modern methods in scientific computing and applications NATO science series II 75, 255-281 (2002) · Zbl 1104.91302
[19]Macbeth, J. D.; Merville, L. J.: Tests of the black–Scholes and Cox call option valuation models, Journal of finance 35, 285-300 (1980)
[20]Munk, C.; Sørensen, C.; Vinther, N. T.: Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: are popular recommendations consistent with rational behavior?, International review of economics and finance 13, 141-166 (2004)
[21]Schroder, M.: Computing the constant elasticity of variance option pricing formula, Journal of finance 44, 211-219 (1989)
[22]Xiao, J.; Zhai, H.; Qin, C.: The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insurance: mathematics economics 40, 302-310 (2007) · Zbl 1141.91473 · doi:10.1016/j.insmatheco.2006.04.007