zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
(α,β)-intuitionistic fuzzy ideals of hemirings. (English) Zbl 1232.08004
Summary: We introduce the concept of (α,β)-intuitionistic fuzzy sub-hemiring, (left, right, two sided) ideals of hemirings, where α,β are any two of {,q,q,q} with αq, by using belongs to relation () and quasi-coincidence with relation (q) between intuitionistic fuzzy points and intuitionistic fuzzy sets, and investigate related properties. Moreover, we define prime (semiprime) (α,β)-intuitionistic fuzzy ideals of hemirings and investigate some different properties of these ideals.
MSC:
08A72Fuzzy algebraic structures
16Y99Generalizations of associative rings and algebras
References:
[1]Vandiver, H. S.: Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. amer. Math. soc. 40, 914-920 (1934) · Zbl 0010.38804 · doi:10.1090/S0002-9904-1934-06003-8
[2]Aho, A. W.; Ullman, J. D.: Introduction to automata theory, languages and computation, (1976)
[3]Kuich, W.; Salomma, A.: Semirings, automata, languages, (1986)
[4]Benson, D. B.: Bialgebras: some foundations for distributed and concurrent computation, Fund. inform. 12, 427-486 (1989) · Zbl 0689.18009
[5]Golan, J. S.: Semirings and their applications, (1999)
[6]Glazek, K.: A guide to literature on semirings and their applications in mathematics and information sciences with complete bibliography, (2002)
[7]Hebisch, U.; Weinert, H. J.: Semirings: algebraic theory and applications in the computer science, (1998)
[8]Lee, E. T.; Zadeh, L. A.: Note on fuzzy languages, Inform. sci. 1, 421-434 (1969)
[9]Wee, W. G.; Fu, K. S.: A formulation of fuzzy automata and its applications as a model of learning system, IEEE trans. Syst. sci. Cybern. 5, 215-233 (1969) · Zbl 0188.33203
[10]Beasley, L. B.; Pullman, N. J.: Operators that preserve semiring matrix functions, Linear algebra appl. 99, 199-216 (1988) · Zbl 0635.15003 · doi:10.1016/0024-3795(88)90132-2
[11]Beasley, L. B.; Pullman, N. J.: Linear operators strongly that preserving idempotent matrices over semiring, Linear algebra appl. 160, 217-229 (1992) · Zbl 0744.15010 · doi:10.1016/0024-3795(92)90448-J
[12]Tan, Y. J.: On invertible matrices over antirings, Linear algebra appl. 423, 428-444 (2007) · Zbl 1121.15019 · doi:10.1016/j.laa.2007.01.018
[13]Tan, Y. J.: On nilpotent marices over antirings, Linear algebra appl. 429, 1243-1253 (2008)
[14]Zadeh, L. A.: Fuzzy sets, Inf. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[15]Rosenfeld, A.: Fuzzy groups, J. math. Anal. appl. 35, 512-517 (1971) · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[16]Ahsan, J.; Saifullah, K.; Khan, M. F.: Fuzzy semirings, Fuzzy sets and systems 60, 309-320 (1993) · Zbl 0796.16038 · doi:10.1016/0165-0114(93)90441-J
[17]Ghosh, S.: Fuzzy k-ideals of semirings, Fuzzy sets and systems 95, 103-108 (1998) · Zbl 0924.16036 · doi:10.1016/S0165-0114(96)00306-5
[18]Zhan, J.; Tan, Z.: T-fuzzy k-ideals of semirings, Sci. math. Japan 58, 597-601 (2003) · Zbl 1063.16052
[19]Jun, Y. B.; Özürk, M. A.; Song, S. Z.: On fuzzy h-ideals in hemirings, Inform. sci. 162, 211-226 (2004) · Zbl 1064.16051 · doi:10.1016/j.ins.2003.09.007
[20]Ahsan, J.: Semirings characterized by their fuzzy ideals, J. fuzzy math. 6, 181-192 (1998) · Zbl 0906.16019
[21]Dudek, W. A.; Shabir, M.; Ali, I.: (α,β)-fuzzy ideals of hemirings, Comput. math. Appl. 58, No. 2, 310-321 (2009) · Zbl 1189.16041 · doi:10.1016/j.camwa.2009.03.097
[22]Jun, Y. B.: A note on (α,β)-fuzzy ideals of hemirings, Comput. math. Appl. 59, No. 8, 2582-2586 (2010) · Zbl 1193.16040 · doi:10.1016/j.camwa.2010.01.017
[23]Davvaz, B.: (,q)-fuzzy subnear-rings and ideals, Soft comput. 10, 206-211 (2006) · Zbl 1084.16040 · doi:10.1007/s00500-005-0472-1
[24]Davvaz, B.; Corsini, P.: Redefined fuzzy hv-submodules and many valued implications, Inform. sci. 177, 865-875 (2007) · Zbl 1109.16036 · doi:10.1016/j.ins.2006.04.009
[25]Davvaz, B.; Zhan, J.; Shum, K. P.: Generalized fuzzy hv-submodules endowed with interval valued membership functions, Inform. sci. 178, 3147-3159 (2008) · Zbl 1149.16035 · doi:10.1016/j.ins.2008.03.016
[26]Aslam, M.; Abdullah, S.; Amin, N.: Characterizations of gamma LA-semigroups by generalized fuzzy gamma ideals, Int. J. Math. stat. 11, No. 1, 29-50 (2012)
[27]Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy sets and systems 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[28]Atanassov, K.: New operations defined over the intuitionistic fuzzy sets, Fuzzy sets and systems 61, 137-142 (1994) · Zbl 0824.04004 · doi:10.1016/0165-0114(94)90229-1
[29]Atanassov, K.: Intuitionistic fuzzy sets, Theory and applications, studies in fuzziness and soft computing 35 (1999)
[30]Gau, W. L.; Buehre, D. J.: Vague sets, IEEE trans. Syst. man cybern. 23, 610-614 (1993)
[31]Burillo, P.; Bustince, H.: Vague sets are intuitionistic fuzzy sets, Fuzzy sets and systems 79, 403-405 (1996) · Zbl 0871.04006 · doi:10.1016/0165-0114(95)00154-9
[32]W.A. Dudek, Intuitionistic fuzzy h-ideals of hemirings, in: Proc. of the 5th WSEAS Int. Conf. on Non-Linear Analysis, Non-Linear Systems and Chaos, Bucharest, Romania, 2006, pp. 153–159.
[33]Dudek, W. A.: Special types of intuitionistic fuzzy left h-ideals of hemirings, Soft comput. 12, 359-364 (2008) · Zbl 1137.16041 · doi:10.1007/s00500-007-0169-8
[34]Coker, D.; Demirci, M.: On intuitionistic fuzzy points, Notes IFS 1, No. 2, 79-84 (1995) · Zbl 0850.04011
[35]Jun, Y. B.: On (Φ,Ψ)-intuitionistic fuzzy fubgroups, KYUNGPOOK math. J. 45, 87-94 (2005) · Zbl 1082.20047
[36]M. Aslam, S. Abdullah, (Φ,Ψ)-intuitionistic fuzzy ideals of semigroups, Ital. J. Pure. Appl. Math. 32 (in press).