zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). (English) Zbl 1232.33005
The author studies the associated Legendre functions of the first kind P ν μ (z) in case of integer values of the degree ν and the order μ. The main result is a relationship between the partial derivative P ν m (z)/ν ν=n with respect to the degree and the partial derivative P n μ (z)/μ μ=m with respect to the order for m,n 0 . This relationship is used to derive some new representations for P ν m (z)/ν ν=n based on representations for P n μ (z)/μ μ=m obtained earlier by the author in [J. Math. Chem. 46, No. 1, 231–260 (2009; Zbl 05571791)] for integer values of m and n with 0mn. Moreover, several new expressions are derived for the associated Legendre functions Q n m (z) of the second kind of integer degree and integer order.
MSC:
33C10Bessel and Airy functions, cylinder functions, 0 F 1
33C45Orthogonal polynomials and functions of hypergeometric type
Software:
DLMF
References:
[1]Brychkov, Yu.A.: On the derivatives of the Legendre functions Pνμ(z) and Qνμ(z) with respect to μ and ν, Integral transforms spec. Funct. 21, 175 (2010) · Zbl 1204.33010 · doi:10.1080/10652460903069660
[2]Cohl, H. S.: Derivatives with respect to the degree and order of associated Legendre functions for |z|>1 using modified Bessel functions, Integral transforms spec. Funct. 21, 581 (2010) · Zbl 1195.31006 · doi:10.1080/10652460903445043
[3]Cohl, H. S.: On parameter differentiation for integral representations of associated Legendre functions, SIGMA symmetry integrability geom. Methods appl. 7, 050 (2011) · Zbl 1218.31008 · doi:10.3842/SIGMA.2011.050
[4]Szmytkowski, R.: On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. math. Chem. 46, 231 (2009)
[5]Szmytkowski, R.: On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order), J. math. Chem. 49, 1436 (2011)
[6]Szmytkowski, R.: Green’s function for the wavized Maxwell fish-eye problem, J. phys. A 44, 065203 (2011) · Zbl 1210.35246 · doi:10.1088/1751-8113/44/6/065203
[7]Hobson, E. W.: The theory of spherical and ellipsoidal harmonics, (1931) · Zbl 0004.21001
[8], Higher transcendental functions, vol. 1 1 (1953)
[9], Handbook of mathematical functions (1965)
[10]Magnus, W.; Oberhettinger, F.; Soni, R. P.: Formulas and theorems for the special functions of mathematical physics, (1966) · Zbl 0143.08502
[11]Gradshteyn, I. S.; Ryzhik, I. M.: Table of integrals, series, and products, (2007)
[12], NIST handbook of mathematical functions (2010)
[13]Robin, L.: Fonctions sphériques de Legendre et fonctions sphéroïdales, vol. 1, (1957) · Zbl 0079.09601
[14]Robin, L.: Fonctions sphériques de Legendre et fonctions sphéroïdales, vol. 2, (1958)
[15]Robin, L.: Fonctions sphériques de Legendre et fonctions sphéroïdales, vol. 3, (1959)
[16]Barnes, E. W.: On generalized Legendre functions, Quart. J. Pure appl. Math. 39, 97 (1907) · Zbl 39.0528.02
[17]Szmytkowski, R.: On the derivative of the Legendre function of the first kind with respect to its degree, J. phys. A 39, 15147 (2006) · Zbl 1112.33009 · doi:10.1088/0305-4470/39/49/006
[18]Szmytkowski, R.: Addendum to ’on the derivative of the Legendre function of the first kind with respect to its degree’, J. phys. A 40, 14887 (2007) · Zbl 1125.33303 · doi:10.1088/1751-8113/40/49/020
[19]Schelkunoff, S. A.: Theory of antennas of arbitrary size and shape, Proc. IRE 29, 493 (1941)