zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Positive solutions to singular system with four-point coupled boundary conditions. (English) Zbl 1232.34034

This paper is devoted to the solvability of the system

-x '' (t)=ft , x ( t ) , y ( t ),t(0,1),
-y '' (t)=gt , x ( t ) , y ( t ),t(0,1),

where f,g:(0,1)×[0,)×[0,)[0,) are continuous and unbounded at t=0 and t=1, and the parameters α,β,ξ,η are such that ξ,η(0,1) and 0<αβξη<1·

It is assumed in addition that the function f is such that

f(t,1,1)C((0,1),(0,)), 0 1 t(1-t)f(t,1,1)dt<+

and there exist constants α i ,β i ,i=1,2, and c with the properties 0α i β i <1,i=1,2,β 1 +β 2 <1 and for t(0,1) and x,y[0,)

c β 1 f(t,x,y)f(t,cx,y)c α 1 f(t,x,y),0<c1,c α 1 f(t,x,y)f(t,cx,y)c β 1 f(t,x,y),c1,c β 2 f(t,x,y)f(t,x,cy)c α 2 f(t,x,y),0<c1,c α 2 f(t,x,y)f(t,x,cy)c β 2 f(t,x,y),c1·

It is assumed also that similar conditions hold for g.

Using the Guo-Krasnosel’skii fixed point theorem, the authors establish the existence of a solution (x,y) such that x,yC[0,1]C 2 (0,1) and x and y are positive on (0,1)·

34B16Singular nonlinear boundary value problems for ODE
34B18Positive solutions of nonlinear boundary value problems for ODE
34B10Nonlocal and multipoint boundary value problems for ODE
[1]Agarwal, R. P.; O’regan, D.: Singular differential and integral equations with applications, (2003)
[2]Agmon, S.; Douglis, A.; Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. pure appl. Math. 17, 35-92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[3]Amann, H.: Parabolic evolution equations with nonlinear boundary conditions, Proc. sympos. Pure math. 45, 17-27 (1986) · Zbl 0611.35043
[4]Amann, H.: Parabolic evolution equations and nonlinear boundary conditions, J. differential equations 72, 201-269 (1988) · Zbl 0658.34011 · doi:10.1016/0022-0396(88)90156-8
[5]Aronson, D. G.: A comparison method for stability analysis of nonlinear parabolic problems, SIAM rev. 20, 245-264 (1978) · Zbl 0384.35035 · doi:10.1137/1020038
[6]Asif, N. A.; Eloe, P. W.; Khan, R. A.: Positive solutions for a system of singular second order nonlocal boundary value problems, J. korean math. Soc. 47, No. 5, 985-1000 (2010) · Zbl 1206.34044 · doi:10.4134/JKMS.2010.47.5.985 · doi:http://www.mathnet.or.kr/mathnet/kms_content.php?no=402266
[7]Asif, N. A.; Khan, R. A.: Positive solutions for a class of coupled system of singular three point boundary value problems, Bound. value probl. (2009) · Zbl 1181.34030 · doi:10.1155/2009/273063
[8]Asif, N. A.; Khan, R. A.: Multiplicity results for positive solutions of a coupled system of singular boundary value problems, Comm. appl. Nonlinear anal. 17, No. 2, 53-68 (2010)
[9]Asif, N. A.; Khan, R. A.; Henderson, J.: Existence of positive solutions to a system of singular boundary value problems, Dynam. systems appl. 19, 395-404 (2010) · Zbl 1215.34029
[10]Cheng, X.; Zhong, C.: Existence of positive solutions for a second-order ordinary differential system, J. math. Anal. appl. 312, 14-23 (2005) · Zbl 1088.34016 · doi:10.1016/j.jmaa.2005.03.016
[11]Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cones, (1988)
[12]Ji, D.; Bai, Z.; Ge, W.: The existence of countably many positive solutions for singular multipoint boundary value problems, Nonlinear anal. 72, 955-964 (2010) · Zbl 1200.34016 · doi:10.1016/j.na.2009.07.031
[13]Jiang, W.; Guo, Y.: Multiple positive solutions for second-order m-point boundary value problems, J. math. Anal. appl. 327, 415-424 (2007) · Zbl 1109.34012 · doi:10.1016/j.jmaa.2006.04.006
[14]Khan, R. A.; Webb, J. R. L.: Existence of at least three solutions of a second-order three-point boundary value problem, Nonlinear anal. 64, 1356-1366 (2006) · Zbl 1101.34005 · doi:10.1016/j.na.2005.06.040
[15]Krstic, M.; Smyshlyaev, A.: Boundary control of pdes: A course on backstepping designs, (2008)
[16]Leung, A.: A semilinear reaction-diffusion prey-predator system with nonlinear coupled boundary conditions: equilibrium and stability, Indiana univ. Math. J. 31, 223-241 (1982) · Zbl 0519.92021 · doi:10.1512/iumj.1982.31.31020
[17]Li, J.; Shen, J.: Multiple positive solutions for a second-order three-point boundary value problem, Appl. math. Comput. 182, 258-268 (2006) · Zbl 1109.34014 · doi:10.1016/j.amc.2006.01.095
[18]Liu, B.; Liu, L.; Wu, Y.: Positive solutions for singular systems of three-point boundary value problems, Comput. math. Appl. 53, 1429-1438 (2007) · Zbl 1122.34017 · doi:10.1016/j.camwa.2006.07.014
[19]Liu, B.; Liu, L.; Wu, Y.: Positive solutions for a singular second-order three-point boundary value problem, Appl. math. Comput. 196, 532-541 (2008) · Zbl 1138.34015 · doi:10.1016/j.amc.2007.06.013
[20]Lü, H.; Yu, H.; Liu, Y.: Positive solutions for singular boundary value problems of a coupled system of differential equations, J. math. Anal. appl. 302, 14-29 (2005) · Zbl 1076.34022 · doi:10.1016/j.jmaa.2004.08.003
[21]Mehmeti, F. A.: Nonlinear waves in networks, Math. res. 80 (1994) · Zbl 0831.35096
[22]Mehmeti, F. A.; Nicaise, S.: Nonlinear interaction problems, Nonlinear anal. 20, 27-61 (1993) · Zbl 0817.35035 · doi:10.1016/0362-546X(93)90183-S
[23]Nicaise, S.: Polygonal interface problems, Method. verf. Math. phys. 39 (1993) · Zbl 0794.35040
[24]Wong, F. H.; Chen, T. G.; Wang, S. P.: Existence of positive solutions for various boundary value problems, Comput. math. Appl. 56, 953-958 (2008) · Zbl 1155.34314 · doi:10.1016/j.camwa.2007.11.050
[25]Xian, X.: Existence and multiplicity of positive solutions for multi-parameter three-point differential equations system, J. math. Anal. appl. 324, 472-490 (2006) · Zbl 1113.34017 · doi:10.1016/j.jmaa.2005.12.026
[26]Yao, Q.: Local existence of multiple positive solutions to a singular cantilever beam equation, J. math. Anal. appl. 363, 138-154 (2010) · Zbl 1191.34031 · doi:10.1016/j.jmaa.2009.07.043
[27]Yuan, Y.; Zhao, C.; Liu, Y.: Positive solutions for systems of nonlinear singular differential equations, Electron. J. Differential equations 2008, No. 74 (2008) · Zbl 1179.34025 · doi:emis:journals/EJDE/Volumes/2008/74/abstr.htmlDE055619365
[28]Zettl, A.: Sturm-Liouville theory, Math. surveys monogr. 121 (2005) · Zbl 1103.34001
[29]Zhang, Q.; Jiang, D.: Multiple solutions to semipositone Dirichlet boundary value problems with singular dependent nonlinearities for second order three-point differential equations, Comput. math. Appl. 59, 2516-2527 (2010) · Zbl 1193.34049 · doi:10.1016/j.camwa.2009.12.036
[30]Zhang, G.; Sun, J.: Positive solutions of m-point boundary value problems, J. math. Anal. appl. 291, 406-418 (2004) · Zbl 1069.34037 · doi:10.1016/j.jmaa.2003.11.034
[31]Zhou, Y.; Xu, Y.: Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations, J. math. Anal. appl. 320, 578-590 (2006) · Zbl 1101.34008 · doi:10.1016/j.jmaa.2005.07.014