zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcations of traveling wave solutions for a two-component Fornberg-Whitham equation. (English) Zbl 1232.35125
The authors study a two-component Fornberg-Whitham equation given by u t =u xxt -u x -uu x +3u x u xx +uu xxx +ρ x , ρ t =-(ρu) x , where u=u(x,t) is the height of the water surface above a horizontal bottom, and ρ=ρ(x,t) is related to the horizontal velocity field. Under additional conditions it is shown that there are smooth solutions, non smooth solutions and periodic wave solutions. The proofs are based on transforming the Fornberg-Whitham system into a planar dynamical system and on a discussion of phase portraits. Moreover, the authors present some explicit solutions.

MSC:
35Q35PDEs in connection with fluid mechanics
35Q53KdV-like (Korteweg-de Vries) equations
35C07Traveling wave solutions of PDE
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35B65Smoothness and regularity of solutions of PDE
References:
[1]Lenells, J.: Traveling wave solutions of the Camassa – Holm equation and Korteweg – de Vries equations, J nonlinear math phys 11, 508-520 (2004) · Zbl 1069.35072 · doi:10.2991/jnmp.2004.11.4.7
[2]Camsssa, R.; Holm, D. D.; Hyman, J. M.: An integrable shallow water equation with peaked solitons, Phys rev lett 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[3]Fornberg, B.; Whitham, G.: A numerical and theoretical study of certain nonlinear wave phenomena, Phil trans R soc lond A 289, 373-404 (1978) · Zbl 0384.65049 · doi:10.1098/rsta.1978.0064
[4]Zhou, J.; Tian, L.: Solitons, peakons and periodic cusp wave solutions for the fornberg – Whitham equation, Nonlinear anal real world appl 11, No. 1, 356-363 (2010) · Zbl 1181.35222 · doi:10.1016/j.nonrwa.2008.11.014
[5]Zhou, J.; Tian, L.: A type of bounded traveling wave solutions for the fornberg – Whitham equation, J math anal appl 346, No. 1, 255-261 (2008) · Zbl 1146.35025 · doi:10.1016/j.jmaa.2008.05.055
[6]Wazwaz, A. -M.: Peakons, kinks, compactons and solitary patterns solutions for a family of Camassa – Holm equations by using new hyperbolic schemes, Appl math comput 182, No. 1, 412-424 (2006) · Zbl 1106.65109 · doi:10.1016/j.amc.2006.04.002
[7]Zhou, J.; Tian, L.: Periodic and solitary wave solutions to the fornberg – Whitham equation, Math prob eng (2009) · Zbl 1180.35450 · doi:10.1155/2009/507815
[8]Chen, M.; Liu, S. -Q.; Zhang, Y.: A two-component generalization of the Camassa – Holm equation and its solutions, Lett math phys 75, No. 1, 1-15 (2006) · Zbl 1105.35102 · doi:10.1007/s11005-005-0041-7
[9]Ivanov, R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case, Wave motion 46, No. 6, 389-396 (2009) · Zbl 1231.76040 · doi:10.1016/j.wavemoti.2009.06.012
[10]Constantin, A.; Ivanov, R. I.: On an integrable two-component Camassa – Holm shallow water system, Phys lett A 372, No. 48, 7129-7132 (2008) · Zbl 1227.76016 · doi:10.1016/j.physleta.2008.10.050
[11]Chen, A.; Li, J.; Deng, X.; Huang, W.: Travelling wave solutions of the fornberg – Whitham equation, Appl math comput 215, No. 8, 3068-3075 (2009) · Zbl 1195.35089 · doi:10.1016/j.amc.2009.09.057
[12]Yin, J.; Tian, L.; Fan, X.: Classification of travelling waves in the fornberg – Whitham equation, J math anal appl 368, No. 1, 133-143 (2010) · Zbl 1189.35042 · doi:10.1016/j.jmaa.2010.03.037
[13]Jiang, B.; Bi, Q.: Smooth and non-smooth traveling wave solutions of the fornberg – Whitham equation with linear dispersion term, Appl math comput 216, No. 7, 2155-2162 (2010) · Zbl 1192.65135 · doi:10.1016/j.amc.2010.03.050
[14]Tian, L.; Gao, Y.: The global attractor of the viscous fornberg – Whitham equation, Nonlinear anal theory methods appl 71, No. 11, 5176-5186 (2009) · Zbl 1181.35027 · doi:10.1016/j.na.2009.04.004
[15]Meng, Y.; Tian, L.: Boundary control on the viscous fornberg – Whitham equation, Nonlinear anal real world appl 11, No. 2, 827-837 (2010) · Zbl 1180.35357 · doi:10.1016/j.nonrwa.2009.01.021
[16]Zhou, J.; Tian, L.; Fan, X.: Soliton, kink and antikink solutions of a 2-component of the Degasperis – Procesi equation, Nonlinear anal real world appl 11, No. 4, 2529-2536 (2010) · Zbl 1196.35196 · doi:10.1016/j.nonrwa.2009.08.009
[17]Perko, L.: Differential equations and dynamical systems, (1991)
[18]Li, J. B.; Dai, H. H.: On the study of singular nonlinear travelling wave equations: dynamical approach, (2007)