zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Note on transport equation and fractional Sumudu transform. (English) Zbl 1232.44002
Summary: The Chebyshev polynomials to solve analytically the fractional neutron transport equation in one-dimensional plane geometry are used. The procedure is based on the expansion of the angular flux in terms of the Chebyshev polynomials. The obtained system of fractional linear differential equation is solved analytically by using fractional Sumudu transform.
44A10Laplace transform
45K05Integro-partial differential equations
33C45Orthogonal polynomials and functions of hypergeometric type
33E12Mittag-Leffler functions and generalizations
26A33Fractional derivatives and integrals (real functions)
[1]Watugala, G. K.: Sumudu transforma new integral transform to solve differential equations and control engineering problems, Mathematical engineering in industry 6, No. 4, 319-329 (1998) · Zbl 0916.44002
[2]Eltayeb, H.; Kılıçman, A.: On some application of a new integral transform, International journal of mathematical analysis 4, No. 3, 123-132 (2010) · Zbl 1207.34015 · doi:http://www.m-hikari.com/ijma/ijma-2010/ijma-1-4-2010/index.html
[3]Kılıçman, A.; Gadain, H. E.: An application of double Laplace transform and double sumudu transform, Lobachevskii journal of mathematics 30, No. 3, 214-223 (2009)
[4]Belgacem, F. B. M.: Boundary value problem with indefinite weight and applications, International journal of problems of nonlinear analysis in engineering systems 10, No. 2, 51-58 (1999)
[5]Eltayeb, H.; Kılıçman, A.; Fisher, B.: A new integral transform and associated distributions, Integral transforms and special functions 21, No. 5, 367-379 (2010) · Zbl 1191.35017 · doi:10.1080/10652460903335061
[6]Kılıçman, A.; Eltayeb, H.: A note on integral transforms and partial differential equations, Applied mathematical sciences 4, No. 3, 109-118 (2010) · Zbl 1194.35017 · doi:http://www.m-hikari.com/ams/ams-2010/ams-1-4-2010/index.html
[7]Kılıçman, A.; Eltayeb, H.: On the applications of Laplace and sumudu transforms, Journal of the franklin institute 347, No. 5, 848-862 (2010)
[8]A. Kılıçman, H. Eltayeb, P. Ravi Agarwal, On Sumudu transform and system of differential equations, Abstract and Applied Analysis, 2010, Article ID 598702, 11 pages. doi:10.1155/2010/598702.
[9]Trzaska, Z.: An efficient algorithm for partial expansion of the linear matrix pencil inverse, Journal of the franklin institute 324, 465-477 (1987) · Zbl 0634.65028 · doi:10.1016/0016-0032(87)90055-X
[10]Kadem, A.: Solving the one-dimensional neutron transport equation using Chebyshev polynomials and the sumudu transform, Analele universitatii din oradea fascicola matematič 12, 153-171 (2005) · Zbl 1164.82331
[11]A. Kadem, A. Kılıçman, Note on the solution of transport equation by Tau method and Walsh functions, Abstract and Applied Analysis, 2010, Article ID 704168, 13 pages. doi:10.1155/2010/704168. · Zbl 1221.35021 · doi:10.1155/2010/704168
[12]V.G. Gupta, S. Bhavna, A. Kılıçman, A note on fractional Sumudu transform, Journal of Applied Mathematics, 2010, Article ID 154189. doi:10.1155/2010/154189.
[13]Kılıçman, A.; Gupta, V. G.; Sharma, B.: On the solution of fractional Maxwell equations by sumudu transform, Journal of mathematics research 2, No. 4, 147-151 (2010) · Zbl 1208.35163 · doi:http://www.ccsenet.org/journal/index.php/jmr/article/view/6690
[14]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[15]Luchko, Y.; Gorenflo, R.: An operational method for solving fractional differential equation with the Caputo derivatives, Acta Mathematica vietnamica 24, No. 2, 207-233 (1999) · Zbl 0931.44003
[16]Samko, G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[17]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II, Geophysical journal of the royal astronomical society 13, 529-539 (1967)
[18]Kiani-B., Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Communications in nonlinear science and numerical simulation 14, 863-879 (2009) · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011
[19]Miller, Kenneth S.; Ross, Bertram: An introduction to the fractional calculus and fractional differential equations, (1993)
[20]Podlubny, I.: Fractional differential equations, Mathematics in science and engineering 198 (1999) · Zbl 0924.34008
[21]A. Loverro, Fractional calculus: history, definitions and applications for engineer, Department of Aerospace and Mechanical Engineering, University of Notre Dame, May 8 2004, pp. 870–884.
[22]Tchuenche, M.; Mbare, N. S.: An application of the double sumudu transform, Applied mathematical sciences 1, No. 1–4, 31-39 (2007) · Zbl 1154.44001
[23]Chandrasekhar, S.: Radiative transfer, (1960)