zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence for nonnegative double splittings of matrices. (English) Zbl 1232.65056
The authors consider n by n systems of linear equations with regular matrix A and double splittings A=P-R-S leading to 2-step iterations Px i+1 =Rx i +Sx i-1 . They prove convergence theorems like “a nonnegative double splitting is convergent iff the simple splitting (A=P-(R+S)) is” and comparison theorems for different double splittings of the same or of different matrices A. Explicit examples concern 2 by 2 matrices, there is no result on an advantage of double over simple splittings.
MSC:
65F10Iterative methods for linear systems
References:
[1]Avdelas, G., De Pillis, J., Hadjidimos, A., Neumann, M.: A guide to the acceleration of iterative methods whose iteration matrix is nonnegative and convergent. SIAM J. Matrix Anal. Appl. 9, 329–342 (1988) · Zbl 0657.65051 · doi:10.1137/0609027
[2]Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematics Sciences. Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994)
[3]Bru, R., Ginestar, D., Marín, J., Verdú, G., Mas, J., Manteuffel, T.: Iterative schemes for the neutron diffusion equation. Comput. Math. Appl. 44, 1307–1323 (2002) · Zbl 1103.82321 · doi:10.1016/S0898-1221(02)00258-4
[4]Cvetković, L.J.: Two-sweep iterative methods. Nonlinear Anal. Theory Methods Appl. 30, 25–30 (1997) · Zbl 0889.65025 · doi:10.1016/S0362-546X(97)00002-3
[5]Marek, I., Szyld, D.B.: Comparison theorems for weak splittings of bounded operators. Numer. Math. 58, 387–397 (1990) · Zbl 0694.65023 · doi:10.1007/BF01385632
[6]Miao, S., Zheng, B.: A note on double splittings of different monotone matrices. Calcolo 46, 261–266 (2009) · Zbl 1185.65058 · doi:10.1007/s10092-009-0011-z
[7]Shen, S., Huang, T.: Convergence and comparison theorems for double splittings of matrices. Comput. Math. Appl. 51, 1751–1760 (2006) · Zbl 1134.65341 · doi:10.1016/j.camwa.2006.02.006
[8]Shen, S., Huang, T., Shao, J.: Convergence and comparison results for double splittings of Hermitian positive definite matrices. Calcolo 44, 127–135 (2007) · Zbl 1150.65008 · doi:10.1007/s10092-007-0132-1
[9]Song, Y.: Comparisons of nonnegative splittings of matrices. Linear Algebra Appl. 154–156, 433–455 (1991) · Zbl 0732.65024 · doi:10.1016/0024-3795(91)90388-D
[10]Song, Y.: Comparison theorems for nonnegative splittings of bounded operators. Appl. Math. 12, 137–142 (1999)
[11]Song, Y.: Comparison theorems for splittings of matrices. Numer. Math. 92, 563–591 (2002) · Zbl 1012.65028 · doi:10.1007/s002110100333
[12]Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, vol. 27. Springer, Berlin (2000)
[13]Woźnicki, Z.I.: Estimation of the optimum relaxation factors in partial factorization iterative methods. SIAM J. Matrix. Anal. Appl. 14, 59–73 (1993) · Zbl 0767.65025 · doi:10.1137/0614005
[14]Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)
[15]Zhang, C.: On convergence of double splitting methods for non-Hermitian positive semidefinite linear systems. Calcolo 47, 103–112 (2010) · Zbl 1204.65033 · doi:10.1007/s10092-009-0015-8