zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two-dimensional quaternion wavelet transform. (English) Zbl 1232.65192
Summary: We introduce the continuous quaternion wavelet transform (CQWT). We express the admissibility condition in terms of the (right-sided) quaternion Fourier transform. We show that its fundamental properties, such as inner product, norm relation, and inversion formula, can be established whenever the quaternion wavelets satisfy a particular admissibility condition. We present several examples of the CQWT. As an application we derive a Heisenberg type uncertainty principle for these extended wavelets.

MSC:
65T50Discrete and fast Fourier transforms (numerical methods)
65T60Wavelets (numerical methods)
References:
[1]T.A Ell, Quaternionic-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems, in: Proceedings of 32nd IEEE Conference on Decision and Control, pp. 148 – 1841, San Antonio, TX, 1993.
[2]Pei, S. C.; Ding, J. J.; Chang, J. H.: Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT, IEEE trans. Signal process 49, No. 11, 2783-2797 (2001)
[3]Antoine, J. P.; Murenzi, R.: Two-dimensional directional wavelet and the scale-angle representation, Signal process. 52, No. 3, 259-281 (1996) · Zbl 0875.94074 · doi:10.1016/0165-1684(96)00065-5
[4]Antoine, J. P.; Vandergheynst, P.: Two-dimensional directional wavelet in imaging processing, Int. J. Imag. syst. Technol. 7, No. 3, 152-165 (1996)
[5]Gröchenig, K.: Foundation of time-frequency analysis, (2001) · Zbl 0966.42020
[6]Traversoni, L.: Imaging analysis using quaternion wavelet, in geometric algebra with applications, Science and engineering (2001)
[7]Hitzer, E.: Quaternion Fourier transform on quaternion fields and generalizations, Adv. appl. Clifford algebr. 17, No. 3, 497-517 (2007) · Zbl 1143.42006 · doi:10.1007/s00006-007-0037-8
[8]Hitzer, E.; Mawardi, B.: Clifford Fourier transform on multivector fields and uncertainty principle for dimensions n=2 (mod 4) and n=3 (mod 4), Adv. appl. Clifford algebr. 18, No. 3 – 4, 715-736 (2008) · Zbl 1177.15029 · doi:10.1007/s00006-008-0098-3
[9]Brackx, F.; Delange, R.; Sommen, F.: Clifford – Hermite wavelets in Euclidean space, J. Fourier anal. Appl. 8, No. 3, 299-310 (2000)
[10]Brackx, F.; Sommen, F.: Benchmarking of three-dimensional Clifford wavelet functions, Complex variables: theory and applications 47, No. 7, 577-588 (2002) · Zbl 1041.42026 · doi:10.1080/02781070290016269
[11]Bayro-Corrochano, E.: The theory and use of the quaternion wavelet transform, J. math. Imag. vision 24, No. 1, 19-35 (2006)
[12]Zhou, J.; Xu, Y.; Yang, X.: Quaternion wavelet phase based stereo matching for uncalibrated images, Pattern recogn. Lett. 28, No. 12, 1509-1522 (2007)
[13]Mallat, S.: A wavelet tour of signal processing, (1999) · Zbl 0998.94510
[14]Mawardi, B.; Hitzer, E.; Hayashi, A.; Ashino, R.: An uncertainty principle for quaternion Fourier transform, Comput. math. Appl. 56, No. 9, 2411-2417 (2008) · Zbl 1165.42310 · doi:10.1016/j.camwa.2008.05.032
[15]Mawardi, B.; Hitzer, E.; Ashino, R.; Vaillancourt, R.: Windowed Fourier transform of two-dimensional quaternionic signals, App. math. Comput. 216, No. 8, 2366-2379 (2010) · Zbl 1196.42009 · doi:10.1016/j.amc.2010.03.082
[16]Mawardi, B.; Adji, S.; Zhao, J.: Clifford algebra-valued wavelet transform on multivector fields, Adv. appl. Clifford algebr. 21, No. 1, 13-30 (2011) · Zbl 1217.15032 · doi:10.1007/s00006-010-0239-3
[17]Mawardi, B.; Hitzer, E.: Clifford algebra cl3,0-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets, Int. J. Wavelets multiresolut. Inf. process. 5, No. 6, 997-1019 (2007) · Zbl 1197.42019 · doi:10.1142/S0219691307002166
[18]Debnath, L.: Wavelet transforms and their applications, (2002)
[19]He, J. X.: Continuous wavelet transform on the space L2(R,H;dx), Appl. math. Lett. 17, No. 1, 111-121 (2001)
[20]Weyl, H.: The theory of groups and quantum mechanics, (1950)
[21]Zhao, J.; Peng, L.: Quaternion-valued admissible wavelets associated with the 2-dimensional Euclidean group with dilations, J. nat. Geom. 20, No. 1, 21-32 (2001) · Zbl 1020.42025