zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization of uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity. (English) Zbl 1233.34016
Summary: The concept of practical synchronization is introduced and the chaos synchronization of uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity is investigated. Based on a time-domain approach, a tracking control is proposed to realize chaos synchronization for the uncertain Genesio-Tesi chaotic systems with deadzone nonlinearity. Moreover, the guaranteed exponential convergence rate and convergence radius can be prespecified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.
MSC:
34C28Complex behavior, chaotic systems (ODE)
34H10Chaos control (ODE)
34D06Synchronization
34A34Nonlinear ODE and systems, general
93C15Control systems governed by ODE
References:
[1]Chang, W.: Inform. sci., Inform. sci. 151, 227 (2003)
[2]Chantov, D. P.: Phys. lett. A, Phys. lett. A 372, 5783 (2008)
[3]Chen, H. K.: Chaos solitons fractals, Chaos solitons fractals 23, 1245 (2005)
[4]Chien, T. I.; Liao, T. L.: Chaos solitons fractals, Chaos solitons fractals 24, 241 (2005)
[5]Guo, R.: Phys. lett. A, Phys. lett. A 372, 5593 (2008)
[6]Parvathi, M. R.: Phys. lett. A, Phys. lett. A 373, 96 (2008)
[7]Shi, Z.; Hong, S.; Chen, K.: Phys. lett. A, Phys. lett. A 372, 5575 (2008)
[8]Sun, M.; Zeng, C.; Tian, L.: Phys. lett. A, Phys. lett. A 372, 6904 (2008)
[9]Tang, R. A.; Liu, Y. L.; Xue, J. K.: Phys. lett. A, Phys. lett. A 373, 1449 (2009)
[10]Xu, J. X.; Xu, J.; Lee, T. H.: IEEE trans. Automat. control, IEEE trans. Automat. control 50, 1455 (2005)
[11]Zhao, Y.; Yang, Y.: Phys. lett. A, Phys. lett. A 372, 7165 (2008)
[12]Ji, D. H.; Park, J. H.; Won, S. C.: Phys. lett. A, Phys. lett. A 373, 1044 (2009)
[13]Lee, S. M.; Park, J. H.; Kwon, O. M.: Phys. lett. A, Phys. lett. A 362, 348 (2007)
[14]Singh, V.: Phys. lett. A, Phys. lett. A 372, 5287 (2008)
[15]Sun, Y. J.: Chaos solitons fractals, Chaos solitons fractals 35, 383 (2008)
[16]Sun, Y. J.; Hsieh, J. G.: ASME J. Dyn. syst. Meas. control, ASME J. Dyn. syst. Meas. control 119, 825 (1997)
[17]Xiang, Y. L.; Mei, D. C.: Phys. lett. A, Phys. lett. A 373, 1325 (2009)
[18]Xin, H.; Gan, D.; Qiu, J.: Phys. lett. A, Phys. lett. A 372, 3999 (2008)
[19]Genesio, R.; Tesi, A.: Automatica, Automatica 28, 531 (1992)
[20]Huang, L.; Feng, R.; Wang, M.: Phys. lett. A, Phys. lett. A 320, 271 (2004)
[21]Park, J. H.; Lee, S. M.; Kwon, O. M.: Phys. lett. A, Phys. lett. A 371, 263 (2007)