zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the prescribed Q-curvature problem on S n . (English) Zbl 1233.53007
Assuming n5, on a smooth compact Riemannian manifold (M n ,g), the Q-curvature is a fourth-order invariant involved in the Paneitz operator expression. The present work studies the problem of prescribing the Q-curvature on the standard n-sphere. The main assumption here is that the order β of flatness at critical points of the prescribed Q-curvature satisfies n-4β<n. The problem has a variational structure, but the lack of compactness does not permit to use standard variational methods. In particular, the problem fails to satisfy the Palais-Smale condition, which is the main difficulty of this problem. The outline of the proof is the following: first, a study of the critical points at infinity of the variational problem; second, the computation of the Morse index of each critical point at infinity; and then, a comparison of the total index with the Euler-Poincaré characteristic of the space of variation. The characterization of the critical points at infinity is obtained through the construction of a suitable pseudo-gradient at infinity. This construction is based on a very delicate expansion of the gradient of the associated Euler-Lagrange functional near infinity. New existence results are obtained through formulas of Euler-Hopf type. The proof gives an upper bound on the Morse index of the obtained solutions and a lower bound on the number of conformal metrics having the same Q-curvature.
53C21Methods of Riemannian geometry, including PDE methods; curvature restrictions (global)
58J60Relations of PDE with special manifold structures
53C43Differential geometric aspects of harmonic maps
[1]Abdelhedi, W.; Chtioui, H.: On the prescibed paneitz curvature problem on the standard spheres, Adv. nonlinear stud. 4, 511-528 (2006) · Zbl 1184.53043
[2]Bahri, A.: Critical point at infinity in some variational problems, Pitman res. Notes math. 182 (1989) · Zbl 0676.58021
[3]Bahri, A.: An invariant for yamabe-type flows with applications to scalar curvature problems in high dimensions, A celebration of J.F. Nash jr., Duke math. J. 81, 323-466 (1996) · Zbl 0856.53028 · doi:10.1215/S0012-7094-96-08116-8
[4]Bahri, A.; Coron, J. M.: The scalar curvature problem on the standard three dimensional spheres, J. funct. Anal. 95, 106-172 (1991) · Zbl 0722.53032 · doi:10.1016/0022-1236(91)90026-2
[5]Bahri, A.; Rabinowitz, P.: Periodic orbits of Hamiltonian systems of three body type, Ann. inst. H. Poincaré anal. Non linéaire 8, 561-649 (1991) · Zbl 0745.34034 · doi:numdam:AIHPC_1991__8_6_561_0
[6]Ben Ayed, M.; El Mehdi, K.: The paneitz curvature problem on lower dimensional spheres, Ann. global anal. Geom. 31, No. 1, 1-36 (2007) · Zbl 1170.35394 · doi:10.1007/s10455-005-9003-7
[7]Ben Ayed, M.; Chen, Y.; Chtioui, H.; Hammami, M.: On the prescribed scalar curvature problem on 4-manifolds, Duke math. J. 84, 633-677 (1996) · Zbl 0862.53034 · doi:10.1215/S0012-7094-96-08420-3
[8]Chang, S. Y. A.; Yang, P. C.: Extremal metrics of zeta function determinants on 4-manifolds, Ann. of math. 142, 171-212 (1995) · Zbl 0842.58011 · doi:10.2307/2118613
[9]Chtioui, H.; Rigane, A.: On the prescribed Q-curvature problem on sn, C. R. Acad. sci. Paris ser. I 348, 635-638 (2010) · Zbl 1193.53101 · doi:10.1016/j.crma.2010.03.018
[10]Djadli, Z.; Hebey, E.; Ledoux, M.: Paneitz type operators and application, Duke math. J. 104, No. 1, 129-169 (2000) · Zbl 0998.58009 · doi:10.1215/S0012-7094-00-10416-4
[11]Djadli, Z.; Malchiodi, A.: Existence of conformal metrics with constant Q-curvature, Ann. of math. (2) 168, No. 3, 813-858 (2008) · Zbl 1186.53050 · doi:10.4007/annals.2008.168.813 · doi:http://annals.math.princeton.edu/annals/2008/168-3/p03.xhtml
[12]Djadli, Z.; Malchiodi, A.; Ahmadou, M. Ould: Prescribing a fourth order conformal invariant on the standard sphere. II: blow up analysis and applications, Ann. sc. Norm. super. Pisa cl. Sci. (5) 1, 387-434 (2002) · Zbl 1150.53012
[13]Felli, V.: Existence of conformal metrics on sn with prescribed fourth-order invariant, Adv. differential equations 7, 47-76 (2002) · Zbl 1054.53061
[14]Gursky, M.: The principal eigenvalue of a conormally invariant differential operator, with an application to semilinear elliptic PDE, Comm. math. Phys. 207, 131-147 (1999) · Zbl 0988.58013 · doi:10.1007/s002200050721
[15]Hatcher, Allen: Algebraic topology, (2002)
[16]Li, Y. Y.: Prescribing scalar curvature on sn and related topics, part I, J. differential equations 120, 319-410 (1995)
[17]Li, Y. Y.: Prescribing scalar curvature on sn and related topics, part II : Existence and compactness, Comm. pure appl. Math. 49, 541-579 (1996) · Zbl 0849.53031 · doi:10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
[18]Schoen, R.; Zhang, D.: Prescribed scalar curvature on the n-sphere, Calc. var. Partial differential equations 4, 1-25 (1996) · Zbl 0843.53037 · doi:10.1007/BF01322307
[19]Wei, J.; Xu, X.: On conformal deformations of metrics on sn, J. funct. Anal. 157, 292-325 (1998)