zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Input-to-state stability of impulsive and switching hybrid systems with time-delay. (English) Zbl 1233.93083
Summary: This paper investigates Input-to-State Stability (ISS) and Integral Input-to-State stability (IISS) of impulsive and switching hybrid systems with time-delay, using the method of multiple Lyapunov-Krasovskii functionals. It is shown that, even if all the subsystems governing the continuous dynamics, in the absence of impulses, are not ISS/IISS, impulses can successfully stabilize the system in the ISS/iISS sense, provided that there are no overly long intervals between impulses, i.e., the impulsive and switching signal satisfies a dwell-time upper bound condition. Moreover, these impulsive ISS/IISS stabilization results can be applied to systems with arbitrarily large time-delays. Conversely, in the case when all the subsystems governing the continuous dynamics are ISS/IISS in the absence of impulses, the ISS/IISS properties can be retained if the impulses and switching do not occur too frequently, i.e., the impulsive and switching signal satisfies a dwell-time lower bound condition. Several illustrative examples are presented, with their numerical simulations, to demonstrate the main results.
93D25Input-output approaches to stability of control systems
93C30Control systems governed by other functional relations
93C15Control systems governed by ODE
[1]Ballinger, G.; Liu, X.: Existence and uniqueness results for impulsive delay differential equations, Dynamics of continuous, discrete impulsive systems 5, 579-591 (1999)
[2]Ballinger, G.; Liu, X.: Practical stability of impulsive delay differential equations and applications to control problems, (2001) · Zbl 0986.93062
[3]Bellman, R.: Topics in pharmacokinetics, III: Repeated dosage and impulsive control, Mathematical biosciences 12, 1-5 (1971)
[4]Branicky, M. S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE transactions on automatic control 43, 475-482 (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[5]Cai, C., & Teel, A.R. (2005). Results on input-to-state stability for hybrid systems. In Proc. of the 44th conf. on decision and control (pp. 5403–5408).
[6]Cai, C.; Teel, A. R.: Characterizations of input-to-state stability for hybrid systems, Systems control letters 58, 47-53 (2009) · Zbl 1154.93037 · doi:10.1016/j.sysconle.2008.07.009
[7]Carter, T.: Optimal impulsive space trajectories based on linear equations, Journal of optimization theory and applications 70, 277-297 (1991) · Zbl 0732.49025 · doi:10.1007/BF00940627
[8]Chen, W. -H.; Zheng, W. X.: Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica 45, 1481-1488 (2009) · Zbl 1166.93370 · doi:10.1016/j.automatica.2009.02.005
[9]Goebel, R.; Sanfelice, R. G.; Teel, A. R.: Hybrid dynamical systems: robust stability and control for systems that combine continuous-time and discrete-time dynamics, IEEE control systems magazine 29, 28-93 (2009)
[10]Haddad, W. M.; Chellaboina, V.; Nersesov, S. G.: Impulsive and hybrid dynamical systems, (2006)
[11]Hale, J. K.; Lunel, S. M. V.: Introduction to functional differential equations, (1993)
[12]Hespanha, J. P.: Uniform stability of switched linear systems: extension of lasalle’s invariance principle, IEEE transactions on automatic control 49, 470-482 (2004)
[13]Hespanha, J. P.; Liberzon, D.; Teel, A. R.: Lyapunov conditions for input-to-state stability of impulsive systems, Automatica 44, 2735-2744 (2008) · Zbl 1152.93050 · doi:10.1016/j.automatica.2008.03.021
[14]Jiang, Z. P.; Wang, Y.: Input-to-state stability for discrete-time nonlinear systems, Automatica 37, 857-869 (2001) · Zbl 0989.93082 · doi:10.1016/S0005-1098(01)00028-0
[15]Kolmanovskii, V.; Myshkis, A.: Introduction to the theory and applications of functional differential equations, (1999)
[16]Lakshmikantham, V.; Baĭnov, D.; Simeonov, P.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[17]Liao, Y. C.: Switching and impulsive control of a reflected diffusion, Applied mathematics and optimization 11, 153-159 (1984) · Zbl 0553.93068 · doi:10.1007/BF01442175
[18]Liberzon, D.: Switching in systems and control, (2003)
[19]Li, C.; Liao, X.; Yang, X.; Huang, T.: Impulsive stabilization and synchronization of a class of chaotic delay systems, Chaos 15, 043103 (2005) · Zbl 1144.37371 · doi:10.1063/1.2102107
[20]Li, Z.; Soh, Y.; Wen, C.: Switched and impulsive systems: analysis, design, and applications, Lecture notes in control and information sciences 313 (2005)
[21]Liu, X.: Stability of impulsive control systems with time delay, Mathematical and computer modelling 39, 511-519 (2004) · Zbl 1081.93021 · doi:10.1016/S0895-7177(04)90522-5
[22]Liu, X.: Impulsive stabilization and control of chaotic system, Nonlinear analysis 47, 1081-1092 (2001) · Zbl 1042.93523 · doi:10.1016/S0362-546X(01)00248-6
[23]Liu, X.: Impulsive stabilization and applications to population growth models, The rocky mountain journal of mathematics 25, 381-395 (1995) · Zbl 0832.34039 · doi:10.1216/rmjm/1181072290
[24]Liu, J.; Liu, X.; Xie, W. -C.: Invariance principles for impulsive switched systems, Dynamics of continuous, discrete impulsive systems. Series B. Applications algorithms 16, 631-654 (2009)
[25]Liu, X.; Rohlf, K.: Impulsive control of a Lotka–Volterra system, IMA journal of mathematical control and information 15, 269-284 (1998) · Zbl 0949.93069 · doi:10.1093/imamci/15.3.269
[26]Liu, X.; Wang, Q.: Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays, IEEE transactions on neural networks 19, 71-79 (2008)
[27]Liu, X.; Wang, Q.: The method of Lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear analysis 66, 1465-1484 (2007) · Zbl 1123.34065 · doi:10.1016/j.na.2006.02.004
[28]Mancilla-Aguilar, J. L.; Garcia, R. A.: On converse Lyapunov theorems for ISS and iiss switched nonlinear systems, Systems control letters 42, 47-53 (2001) · Zbl 0985.93052 · doi:10.1016/S0167-6911(00)00079-7
[29]Neuman, C.; Costanza, V.: Deterministic impulse control in native forest ecosystems management, Journal of optimization theory and applications 66, 173-196 (1990) · Zbl 0681.90031 · doi:10.1007/BF00939533
[30]Pepe, P.; Jiang, Z. P.: A Lyapunov–Krasovskiĭ methodology for ISS and iiss of time-delay systems, Systems control letters 55, 1006-1014 (2006) · Zbl 1120.93361 · doi:10.1016/j.sysconle.2006.06.013
[31]Richard, J. -P.: Time-delay systems: an overview of some recent advances and open problems, Automatica 39, 1667-1694 (2003) · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[32]Shen, J.; Luo, Z.; Liu, X.: Impulsive stabilization of functional-differential equations via Lyapunov functionals, Journal of mathematical analysis and applications 240, 1-15 (1999) · Zbl 0955.34069 · doi:10.1006/jmaa.1999.6551
[33]Shorten, R.; Wirth, F.; Mason, O.; Wulff, K.; King, C.: Stability criteria for switched and hybrid systems, SIAM review 49, 543-732 (2007) · Zbl 1127.93005 · doi:10.1137/05063516X
[34]Sontag, E. D.: Smooth stabilization implies coprime factorization, IEEE transactions on automatic control 34, 435-443 (1989) · Zbl 0682.93045 · doi:10.1109/9.28018
[35]Sontag, E. D.: Comments on integral variants of ISS, Systems control letters 34, 93-100 (1998)
[36]Teel, A. R.: Connection between razumikhin-type theorems and the ISS nonlinear small gain theorem, IEEE transactions on automatic control 43, 960-964 (1998) · Zbl 0952.93121 · doi:10.1109/9.701099
[37]Van Der Schaft, A.; Schumacher, H.: An introduction to hybrid dynamical systems, Lecture notes in control and information sciences 251 (2000)
[38]Vu, L.; Chatterjee, D.; Liberzon, D.: Input-to-state stability of switched systems and switching adaptive control, Automatica 42, 639-646 (2007)
[39]Walsh, G. C.; Beldiman, O.; Bushnell, L. G.: Asymptotic behavior of nonlinear networked control systems, IEEE transactions on automatic control 46, 1093-1097 (2001) · Zbl 1006.93040 · doi:10.1109/9.935062
[40]Xie, G.; Wang, L.: Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE transactions on automatic control 49, 960-966 (2004)
[41]Xu, H.; Liu, X.; Teo, K. L.: A LMI approach to stability analysis and synthesis of impulsive switched systems with time delays, Nonlinear analysis hybrid systems 2, 38-50 (2008) · Zbl 1157.93501 · doi:10.1016/j.nahs.2007.01.004
[42]Yang, T.; Chua, L.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE transactions on circuits and systems I: Fundamental theory and applications 44, 976-988 (1997)
[43]Yeganefar, N.; Pepe, P.; Dambrine, M.: Input-to-state stability of time-delay systems: a link with exponential stability, IEEE transactions on automatic control 53, 1526-1531 (2008)
[44]Zhang, G.; Liu, Z.; Ma, Z.: Synchronization of complex dynamical networks via impulsive control, Chaos 17, 043126 (2007) · Zbl 1163.37389 · doi:10.1063/1.2803894