zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Gelfand model for wreath products. (English) Zbl 1234.20012

From the introduction: A Gelfand model for wreath products r S n is constructed. The proof relies on a combinatorial interpretation of the characters of the model, extending a classical result of Frobenius and Schur.

A complex representation of a group G is called a Gelfand model for G, or simply a model, if it is equivalent to the multiplicity-free direct sum of all the irreducible representations of G. In this paper, we determine an explicit and simple combinatorial action which gives a model for wreath products r S n , and, in particular, for the Weyl groups of type B. For r=1 (i.e., for the symmetric group) the construction is identical with the one given by V. Kodiyalam and D.-N. Verma [A natural representation model for symmetric groups, preprint (2004)] and R. M. Adin, A. Postnikov and Y. Roichman [J. Algebra 320, No. 3, 1311-1325 (2008; Zbl 1172.20009)]. The proof relies on a combinatorial interpretation of the characters, extending a classical result of Frobenius and Schur.

If all the (irreducible) representations of a finite group are real, then, by a result of Frobenius and Schur, the character-value of a model at a group element is the number of square roots of this element in the group. We are concerned in this paper with G(r,n)= r S n , the wreath product of a cyclic group r with a symmetric group S n . For r>2 this group is not real, and Frobenius’ theorem does not apply. It will be shown that the character-value of a model at an element of G(r,n) is the number of “absolute square roots” of this element in the group; see Theorem 3.4 below.

The rest of the paper is organized as follows. The construction of the model is described in Subsection 1.1. Necessary preliminaries and notation are given in Section 2. The combinatorial interpretation of the characters of the model is described in Section 3, Theorem 3.4. Two proofs for this interpretation are given. A direct combinatorial proof, using the Murnaghan-Nakayama rule, is given in Section 4. The second proof combines the properties of the generalized Robinson-Schensted algorithm for wreath products, due to Stanton and White, with a generalized Frobenius-Schur formula due to Bump and Ginzburg; see Section 5. The main theorem, Theorem 1.2, is proved in Section 6. The proof applies generalized Frobenius-Schur character formula, Theorem 3.4, together with Corollary 4.3. Section 7 ends the paper with final remarks and open problems.


MSC:
20C30Representations of finite symmetric groups
20C15Ordinary representations and characters of groups
05E10Combinatorial aspects of representation theory
References:
[1]R. M. Adin, A. Postnikov and Y. Roichman, Combinatorial Gelfand Models, Journal of Algebra, to appear.
[2]J. L. Aguado and J. O. Araujo, A Gelfand model for the symmetric group, Communications in Algebra 29 (2001), 1841–1851. · Zbl 1015.20009 · doi:10.1081/AGB-100002136
[3]J. O. Araujo, A Gelfand model for a Weyl group of type B n, Beitrzur Algebra und Geometrie 44 (2003), 359–373.
[4]J. O. Araujo and J. J. Bigeón, A Gelfand model for a Weyl group of type D n and the branching rules D n B n, Journal of Algebra 294 (2005), 97–116. · Zbl 1081.20052 · doi:10.1016/j.jalgebra.2005.09.001
[5]R. W. Baddeley, Models and involution models for wreath products and certain Weyl groups, Journal of the London Mathematical Society. Second Series 44 (1991), 55–74. · Zbl 0757.20003 · doi:10.1112/jlms/s2-44.1.55
[6]I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Models of representations of compact Lie groups (Russian), Funkcional. Anal. i Prilozen. 9 (1975), 61–62. · Zbl 0315.35072 · doi:10.1007/BF01078183
[7]D. Bump and D. Ginzburg, Generalized Frobenius-Schur numbers, Journal of Algebra 278 (2004), 294–313. · Zbl 1053.20006 · doi:10.1016/j.jalgebra.2004.02.012
[8]G. Frobenius and I. Schur, Über die reellen Darstellungen de rendlichen Gruppen, S’ber. Akad. Wiss. Berlin (1906), 186–208.
[9]R. Gow, Real representations of the finite orthogonal and symplectic groups of odd characteristic, Journal of Algebra 96 (1985), 249–274. · Zbl 0576.20026 · doi:10.1016/0021-8693(85)90049-3
[10]N. F. J. Inglis, R. W. Richardson and J. Saxl, An explicit model for the complex representations of S n, Archiv der Mathematik. Birkhäuser, Basel 54 (1990), 258–259. · Zbl 0695.20008 · doi:10.1007/BF01188521
[11]I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994.
[12]N. Kawanaka and H. Matsuyama, A twisted version of the Frobenius-Schur indicator and multiplicity-free permutation representation, Hokkaido Mathematical Journal 19 (1990), 495–508.
[13]A. A. Klyachko, Models for complex representations of the groups GL(n, q) and Weyl groups (Russian), Dokl. Akad. Nauk SSSR 261 (1981), 275–278.
[14]A. A. Klyachko, Models for complex representations of groups GL(n, q) (Russian), Rossiĭskaya Akademiya Nauk. Matematicheskiĭ Sbornik (N.S.) 120(162) (1983), 371–386.
[15]V. Kodiyalam and D.-N. Verma, A natural representation model for symmetric groups, preprint, 2004.
[16]Y. Roichman, A recursive rule for Kazhdan-Lusztig characters, Advances in Mathematics 129 (1997), 24–45. · Zbl 0889.20023 · doi:10.1006/aima.1996.1629
[17]P. D. Ryan, Representations of Weyl groups of type B induced from centralisers of involutions, Bulletin of the Australian Mathematical Society 44 (1991), 337–344. · Zbl 0738.20007 · doi:10.1017/S0004972700029774
[18]D. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, Journal of Combinatorial Theory. Series A 40 (1985), 211–247. · Zbl 0577.05001 · doi:10.1016/0097-3165(85)90088-3