zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite difference approximations for the fractional advection-diffusion equation. (English) Zbl 1234.65034
Summary: Fractional order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow processes. In this Letter, in order to solve the two-sided fractional advection-diffusion equation, the fractional Crank-Nicholson method (FCN) is given, which is based on shifted Grünwald-Letnikov formula. It is shown that this method is unconditionally stable, consistent and convergent. The accuracy with respect to the time step is of order (Δt) 2 . A numerical example is presented to confirm the conclusions.
MSC:
65M06Finite difference methods (IVP of PDE)
60G22Fractional processes, including fractional Brownian motion
60J60Diffusion processes
35K57Reaction-diffusion equations
35R11Fractional partial differential equations
References:
[1]Hilfer, R.: Applications of fractional calculus in physics, (2000)
[2]Jafari, H.; Momani, S.: Phys. lett. A, Phys. lett. A 370, 388 (2007)
[3]Chaves, A.: Phys. lett. A, Phys. lett. A 239, 13 (1998)
[4]Meerschaert, M. M.; Benson, D.; Scheffler, H. P.; Baeumer, B.: Phys. rev. E, Phys. rev. E 65, 1103 (2002)
[5]Liu, F.; Anh, V.; Turner, I.: J. comput. Appl. math., J. comput. Appl. math. 166, 209 (2004)
[6]Meerschaert, M. M.; Tadjeran, C.: Appl. numer. Math., Appl. numer. Math. 56, 80 (2006)
[7]Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: Water resour. Res., Water resour. Res. 36, No. 6, 1413 (2000)
[8]Podlubny, I.: Fractional differential equations, (1999)
[9]Mainardi, F.: Chaos solitons fractals, Chaos solitons fractals 7, 1461 (1996)
[10]Henry, B. I.; Wearne, S. L.: Physica A, Physica A 276, 448 (2000)
[11]Odibat, Z. M.: Phys. lett. A, Phys. lett. A 372, 1219 (2008)
[12]Momani, S.; Odibat, Z.: Phys. lett. A, Phys. lett. A 365, 345 (2007)
[13]Langlands, T.; Henry, B.: J. comput. Phys., J. comput. Phys. 205, No. 2, 719 (2005)
[14]Morton, K. W.; Mayers, D. F.: Numerical solution of partial differential equations, (1994)
[15]Yuste, S. B.: J. comput. Phys., J. comput. Phys. 216, 264 (2006)
[16]Odibat, Z. M.: Phys. lett. A, Phys. lett. A 370, 295 (2007)
[17]Samko, S.; Kilbas, A.; Marichev, O.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[18]Lubich, C.: SIAM J. Math. anal., SIAM J. Math. anal. 17, 704 (1986)
[19]Tadjeran, C.; Meerschaert, M. M.: J. comput. Phys., J. comput. Phys. 220, 813 (2007)
[20]Isaacson, E.; Keller, H. B.: Analysis of numerical methods, (1966) · Zbl 0168.13101