zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some new results on stability of Takagi-Sugeno fuzzy Hopfield neural networks. (English) Zbl 1234.93088
Summary: We propose some new results on stability properties of Takagi–Sugeno fuzzy Hopfield neural networks with time-delay. Based on Lyapunov stability theory, a new learning law is derived to guarantee passivity and asymptotic stability of Takagi–Sugeno fuzzy Hopfield neural networks. Furthermore, a new condition for Input-to-State Stability (ISS) is established. Illustrative examples are given to demonstrate the effectiveness of the proposed results.
93D20Asymptotic stability of control systems
93D25Input-output approaches to stability of control systems
93C42Fuzzy control systems
[1]Jin, L.; Gupta, M. M.: Stable dynamic backpropagation learning in recurrent neural networks, IEEE trans. Neural networks 10, 1321-1334 (1999)
[2]Hopfield, J. J.: Neurons with grade response have collective computational properties like those of two-state neurons, Proc. natl. Acad. sci. 81, 3088-3092 (1984)
[3]Gupta, M. M.; Jin, L.; Homma, N.: Static and dynamic neural networks, (2003)
[4]Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control, IEEE trans. Syst. man cybern. 15, 116-132 (1985) · Zbl 0576.93021
[5]Tanaka, K.; Sugeno, M.: Stability analysis and design of fuzzy control systems, Fuzzy sets syst. 45, 135-156 (1992) · Zbl 0758.93042 · doi:10.1016/0165-0114(92)90113-I
[6]Mastorocostas, P. A.; Hilas, C. S.: A block-diagonal recurrent fuzzy neural network for system identification, Neural comput. Appl. 18, No. 7, 707-717 (2009)
[7]Huang, H.; Ho, D. W. C.; Lam, J.: Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE trans. Circ. syst. II 52, 251-255 (2005)
[8]Ali, M. S.; Balasubramaniam, P.: Stability analysis of uncertain fuzzy Hopfield neural networks with time delays, Commun. nonlinear sci. Numer. simul. 14, 2776-2783 (2009) · Zbl 1221.34191 · doi:10.1016/j.cnsns.2008.09.024
[9]Li, H.; Chen, B.; Zhou, Q.; Qian, W.: Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters, IEEE trans. Syst. man cybern. B 39, 94-102 (2009)
[10]Liang, X. B.; Wu, L. D.: A simple proof of a necessary and sufficient condition for absolute stability of symmetric neural networks, IEEE trans. Circuits syst. I 45, 1010-1011 (1998) · Zbl 1055.93548 · doi:10.1109/81.721271
[11]Sanchez, E. N.; Perez, J. P.: Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE trans. Circuits syst. I 46, 1395-1398 (1999) · Zbl 0956.68133 · doi:10.1109/81.802844
[12]Chu, T.; Zhang, C.; Zhang, Z.: Necessary and sufficient condition for absolute stability of normal neural networks, Neural networks 16, 1223-1227 (2003)
[13]Chu, T.; Zhang, C.: New necessary and sufficient conditions for absolute stability of neural networks, Neural networks 20, 94-101 (2007) · Zbl 1158.68443 · doi:10.1016/j.neunet.2006.06.003
[14]Rovithakis, G. A.; Christodoulou, M. A.: Adaptive control of unknown plants using dynamical neural networks, IEEE trans. Syst. man cybern. 24, 400-412 (1994)
[15]Jagannathan, S.; Lewis, F. L.: Identification of nonlinear dynamical systems using multilayered neural networks, Automatica 32, 1707-1712 (1996) · Zbl 0879.93010 · doi:10.1016/S0005-1098(96)80007-0
[16]Suykens, J. A. K.; Vandewalle, J.; De Moor, B.: Lure systems with multilayer perceptron and recurrent neural networks; absolute stability and dissipativity, IEEE trans. Autom. control 44, 770-774 (1999) · Zbl 0958.93076 · doi:10.1109/9.754815
[17]Chairez, I.; Poznyak, A.; Poznyak, T.: New sliding-mode learning law for dynamic neural network observer, IEEE trans. Circuits syst. II 53, 1338-1342 (2006)
[18]Rubio, J. J.; Yu, W.: Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm, Neurocomputing 70, 2460-2466 (2007)
[19]Khalil, H. K.: Nonlinear systems, (2001)
[20]Yu, W.; Li, X.: Some stability properties of dynamic neural networks, IEEE trans. Circuits syst. I 48, 256-259 (2001) · Zbl 1019.82015 · doi:10.1109/81.904893
[21]Yu, W.; Li, X.: Passivity analysis of dynamic neural networks with different time-scales, Neural process. Lett. 25, 143-155 (2007)
[22]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishinan, V.: Linear matrix inequalities in systems and control theory, (1994)
[23]Byrnes, C. I.; Isidori, A.; Willem, J. C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear system, IEEE trans. Autom. control 36, 1228-1240 (1991) · Zbl 0758.93007 · doi:10.1109/9.100932
[24]Sontag, E. D.; Wang, Y.: On characterizations of the input-to-state stability property, Syst. control lett. 24, 351-359 (1995) · Zbl 0877.93121 · doi:10.1016/0167-6911(94)00050-6
[25]Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M.: LMI control toolbox, (1995)
[26]B. Mansouri, A. Kruszewski, K. Guelton, N. Manamanni, Sub-optimal tracking control for uncertain T – S fuzzy models, in: Proceedings of IFAC Workshop on Advanced Fuzzy/Neural Control, 2007.
[27]Hunt, K. J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P. J.: Neural networks for control systems — a survey, Automatica 28, 1083-1112 (1992) · Zbl 0763.93004 · doi:10.1016/0005-1098(92)90053-I