zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions. (English) Zbl 1235.34179
The author uses a fixed point theorem due to R. I. Avery and A. C. Peterson [Comput. Math. Appl. 42, 313–322 (2001; Zbl 1005.47051)] to establish the existence of at least three non-negative solutions of some nonlocal boundary value problems to third order differential equations with arbitrary continuous advanced arguments. An example is given to illustrate the main results.
34K10Boundary value problems for functional-differential equations
47N20Applications of operator theory to differential and integral equations
[1]El-Shahed, M.: Positive solutions for nonlinear singular third order boundary value problem, Commun. nonlinear sci. Numer. simul. 14, 424-429 (2009) · Zbl 1221.34059 · doi:10.1016/j.cnsns.2007.10.008
[2]Graef, J. R.; Kong, L.: Positive solutions for third order semipositone boundary value problems, Appl. math. Lett. 22, 1154-1160 (2009) · Zbl 1173.34313 · doi:10.1016/j.aml.2008.11.008
[3]Graef, J. R.; Webb, J. R. L.: Third order boundary value problems with nonlocal boundary conditions, Nonlinear anal. 71, 1542-1551 (2009) · Zbl 1189.34034 · doi:10.1016/j.na.2008.12.047
[4]Li, S.: Positive solutions of nonlinear singular third-order two-point boundary value problem, J. math. Anal. appl. 323, 413-425 (2006) · Zbl 1107.34019 · doi:10.1016/j.jmaa.2005.10.037
[5]Liu, Z.; Ume, J. S.; Kang, S. M.: Positive solutions of a singular nonlinear third order two-point boundary value problems, J. math. Anal. appl. 326, 589-601 (2007) · Zbl 1111.34022 · doi:10.1016/j.jmaa.2006.03.030
[6]Sun, Y.: Positive solutions of singular third-order three-point boundary value problem, J. math. Anal. appl. 306, 589-603 (2005) · Zbl 1074.34028 · doi:10.1016/j.jmaa.2004.10.029
[7]Yao, Q.: The existence and multiplicity of positive solutions for a third-order three-point boundary value problem, Acta math. Appl. sin. 19, 117-122 (2003) · Zbl 1048.34031 · doi:10.1007/s10255-003-0087-1
[8]Yao, Q.; Feng, Y.: The existence of solution for a third-order two-point boundary value problem, Appl. math. Lett. 15, 227-232 (2002) · Zbl 1008.34010 · doi:10.1016/S0893-9659(01)00122-7
[9]Webb, J. R. L.; Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach, J. lond. Math. soc. 74, 673-693 (2006) · Zbl 1115.34028 · doi:10.1112/S0024610706023179
[10]Webb, J. R. L.; Infante, G.: Positive solutions of nonlocal boundary value problems involving integral conditions, Nodea nonlinear differential equations appl. 15, 45-67 (2008) · Zbl 1148.34021 · doi:10.1007/s00030-007-4067-7
[11]Infante, G.; Pietramala, P.; Zima, M.: Positive solutions for a class of nonlocal impulsive BVPs via fixed point index, Topol. methods nonlinear anal. 36, 263-284 (2010)
[12]Jankowski, T.: Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions, Nonlinear anal. 74, 3775-3785 (2011) · Zbl 1221.34071 · doi:10.1016/j.na.2011.03.022
[13]Karakostos, G. L.; Tsamatos, P. Ch.: Existence of multipoint positive solutions for a nonlocal boundary value problem, Topol. methods nonlinear anal. 19, 109-121 (2002) · Zbl 1071.34023
[14]Infante, G.; Pietramala, P.: Nonlocal impulsive boundary value problems with solutions that change sign, Mathematical models in engineering, biology and medicine, Proceedings of the international conference on boundary value problems, 205-213 (2009)
[15]Webb, J. R. L.; Infante, G.: Non-local boundary value problems of arbitrary order, J. lond. Math. soc. 79, 238-259 (2009) · Zbl 1165.34010 · doi:10.1112/jlms/jdn066
[16]Avery, R. I.; Peterson, A. C.: Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. math. Appl. 42, 313-322 (2001) · Zbl 1005.47051 · doi:10.1016/S0898-1221(01)00156-0