zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractions of permutations. An application to Sudoku. (English) Zbl 1235.62105
Summary: We study how to simplify fractional factorial design generation by exploiting the a priori knowledge that can be derived from the orthogonality constraints that the fractional factorial design itself must satisfy. We work on Sudoku puzzles that can be considered as a special case of Latin squares in the class of gerechte designs. We prove that the generation of a Sudoku is equivalent to that of a fraction of a proper set of permutations. We analyse both the 4×4 and the 9×9 Sudoku types.
MSC:
62K15Factorial statistical designs
References:
[1]Bailey, R. A.; Cameron, P. J.; Connelly, R.: Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes, Amer. math. Monthly 115, 383-404 (2008) · Zbl 1149.05010
[2]CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at ://cocoa.dima.unige.it angle, online.
[3]Dahl, G.: Permutation matrices related to sudoku, Linear algebra appl. 430, 2457-2463 (2009) · Zbl 1173.05306 · doi:10.1016/j.laa.2008.12.023
[4]Fontana, R.; Pistone, G.: 2-level fractional factorial designs which are the union of non trivial regular designs, J. statist. Theory pract. 4, No. 1, 181-202 (2010) · Zbl 1216.62120
[5]Fontana, R., Pistone, G., 2010b. Algebraic strata for non symmetrical orthogonal fractional factorial designs and application, La matematica e le sue applicazioni 2010/1, Politecnico di Torino DIMAT.
[6]Fontana, R., Pistone, G., 2010c. Algebraic generation of orthogonal fractional factorial designs. In: 45th Scientific Meeting of the Italian Statistical Society, University of Padua June 16, 2010–June 18, 2010.
[7]Fontana, R.; Rogantin, M. P.: Indicator function and sudoku designs, Algebraic and geometric methods in statistics, 203-224 (2010)
[8]Fontana, R.; Pistone, G.; Rogantin, M.: Classification of two-level factorial fractions, J. statist. Plann. inference 87, 149-172 (2000) · Zbl 0977.62089 · doi:10.1016/S0378-3758(99)00173-1
[9]Pistone, G.; Rogantin, M. P.: Regular fractions and indicator polynomials, Algebraic methods in statistics and probability II, SERIE =Contemp. Math., am. Math. soc., providence, RI. 516, 285-304 (2010) · Zbl 1196.62105
[10]Schrijver, A.: Theory of linear and integer programming, wiley-interscience series in discrete mathematics, (1986) · Zbl 0665.90063
[11]4ti2 team, 2008. 4ti2–A Software Package for Algebraic, Geometric and Combinatorial Problems on Linear Spaces, Available at .4ti2.de angle.
[12]I. Wolfram Research, Mathematica, 2008.