zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution of fractional bioheat equations by finite difference method and HPM. (English) Zbl 1235.65113
Summary: We present a mathematical model of space-time fractional bioheat equation governing the process of heat transfer in tissues during thermal therapy. Using fractional backward finite difference scheme, the problem is converted into an initial value problem of vector-matrix form and homotopy perturbation method is used to solve it. Results are interpreted in the form of standard case and anomalous cases for taking different orders of space and time fractional derivatives.
MSC:
65M06Finite difference methods (IVP of PDE)
35R11Fractional partial differential equations
35K20Second order parabolic equations, initial boundary value problems
45K05Integro-partial differential equations
92C50Medical applications of mathematical biology
References:
[1]J.C. Chato, A method for the measurement of thermal properties of biologic materials, in: Symposium on Thermal Problems in Biotechnology, ASME, LCN068-58741, New York, 1968, pp. 16–25.
[2]Diller, K. R.; Valvano, J. W.; Pearce, J. A.: Bioheat transfer, (2000)
[3]Chen, M. M.; Holmes, K. R.: Microvascular contributions in tissue heat transfer, Ann. New York acad. Sci. 335, 137-150 (1980)
[4]Pennes, H. H.: Analysis of tissue and arterial blood temperatures in the resting human forearm, J. appl. Physiol. 1, 93-122 (1948)
[5]S. Weinbaum, L.M. Jiji, A two phase theory for the influence of circulation on the heat transfer in surface tissue, in: M.K. Wells (Ed.), ASME Proc.: Advances in Bioengineering, WA/HT-72, 1979, pp. 179–182.
[6]Weinbaum, S.; Jiji, L. M.: A new simplified bioheat equation for the effect of blood flow on local average tissue temperature, J. biomech. Eng., ASME 107, 131-139 (1985)
[7]Weinbaum, S.; Jiji, L. M.: The matching of thermal fields surrounding countercurrent microvessels and the closure approximation in the weinbaum–jiji equation, Trans. ASME, J. Biomech. eng. 111, 271-275 (1989)
[8]Weinbaum, S.; Jiji, L. M.: Discussion of papers by wissler and baish et al. Concerning the weinbaum–jiji bioheat equation, J. biomech. Eng. 109, 234-237 (1987)
[9]Weinbaum, S.; Lemons, D. E.: Heat transfer in living tissue: the search for a blood–tissue energy equation and the local thermal microvascular control mechanism, BMES bull. 16, 38-43 (1992)
[10]Weinbaum, S.; Jiji, L. M.; Lemons, D. E.: Theory and experiment for the effect of vascular temperature on surface tissue heat transfer–part 2: model formulation and solution, Trans. ASME, J. Biomech. eng. 106, 331-341 (1984)
[11]Diller, K. R.; Hayes, L.: A finite element model of burn injury in blood–perfused skin, J. biomech. Eng. 105, 300-307 (1983)
[12]Yildirim, A.; Saadatnia, Z.; Askari, H.: Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms, Math. comput. Modelling 54, 697-703 (2011) · Zbl 1225.34044 · doi:10.1016/j.mcm.2011.03.012
[13]Yildirm, A.; Sezer, S. A.: Effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel, Math. comput. Modelling 52, 618-625 (2010) · Zbl 1201.76318 · doi:10.1016/j.mcm.2010.04.007
[14]Li, B.; Wang, J.: Anomalous heat conduction and anomalous diffusion in one-dimensional systems, Phys. rev. Lett. 91, 044301 (2003)
[15]Li, B.; Li, J. Wang; Reply, Wang: Phys. rev. Lett., Phys. rev. Lett. 92, 089402 (2004)
[16]Povstenko, Y. Z.: Fractional heat conduction equation and associated thermal stress, J. thermal stresses 28, 83-102 (2005)
[17]Jiang, X.; Xu, M.: The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems, Physica A 389, 3368-3374 (2010)
[18]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[19]Kilbas, A. A.; Pierantozzi, T.; Trujillo, J. J.: On the solution of fractional evolution equations, J. phys. A: math. Gen. 37, 3271-3283 (2004) · Zbl 1059.35030 · doi:10.1088/0305-4470/37/9/015
[20]Duan, J. S.: Time and space-fractional partial differential equations, J. math. Phys. 46, 1063-1071 (2005) · Zbl 1076.26006 · doi:10.1063/1.1819524
[21]Nakayama, F. Kuwahera: A general bio heat transfer model based on the theory of porous media, Int. J. Heat mass transfer 51, 3190-3199 (2008) · Zbl 1143.80323 · doi:10.1016/j.ijheatmasstransfer.2007.05.030
[22]Giordano, M. A.; Gutierrez, G.; Rinaldic: Fundamental solution to the bio heat equation and their application to magnetic fluid hyperthermia, Int. J. Hyperth. 26 (2010)
[23]Bardati, F.; Gerosa, G.: On the solution of the non-linear bio-heat equation, J. biomech. 23, 791-798 (1990)
[24]Singh, J.; Gupta, P. K.; Rai, K. N.: Homotopy perturbation method to space–time fractional solidification in a finite slab, Appl. math. Model. 35, 1937-1945 (2011) · Zbl 1217.80153 · doi:10.1016/j.apm.2010.11.005
[25]Gupta, P. K.; Singh, J.; Rai, K. N.: Numerical simulation for heat transfer in tissues during thermal therapy, J. therm. Biol. 35, 295-301 (2010)
[26]Zhang, Y.: A finite difference method for fractional partial differential equation, Appl. math. Comput. 215, 524-529 (2009) · Zbl 1177.65198 · doi:10.1016/j.amc.2009.05.018
[27]Meerschaert, M. M.; Tadjeran, C.: Finite difference approximation for fractional advection–dispersion flow equations, J. comput. Appl. math. 172, 65-77 (2003) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[28]Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C.: Finite difference method for two dimensional fractional dispersion equation, J. comput. Phys. 211, 249-261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[29]Chu, Hsin-Ping; Lo, Cheng-Ying: Application of the hybrid differential transform finite difference method to nonlinear transient heat conduction problems, Numer. heat transfer part A: appl. Int. J. Comput. methodol. 53, 295-307 (2008)
[30]Madani, M.; Fathizadeh, M.; Khan, Y.; Yildirim, A.: On the coupling of the homotopy perturbation method and Laplace transformation, Math. comput. Modelling 53, 1937-1945 (2011) · Zbl 1219.65121 · doi:10.1016/j.mcm.2011.01.023
[31]Wang, Q.: Homotopy perturbation method for fractional KdV–Burgers equation, Chaos solitons fractals 35, 843-850 (2008) · Zbl 1132.65118 · doi:10.1016/j.chaos.2006.05.074
[32]Kocak, H.; Yildirm, A.; Zhang, D. H.; Mohyud-Din, S. T.: The comparative Boubaker polynomials expansion scheme (BPES) and homotopy perturbation method (HPM) for solving a standard nonlinear second-order boundary value problem, Math. comput. Modelling 54, 417-422 (2011) · Zbl 1225.65080 · doi:10.1016/j.mcm.2011.02.031
[33]He, J. H.: Homotopy perturbation method for solving boundary value problems, Phys. lett. A 350, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[34]Ganji, D. D.; Sadighi, A.: Application of homotopy perturbation method in nonlinear heat conduction and convection equations, Phys. lett. A 360, 570-573 (2007)
[35]Wu, G. C.; He, J. H.: Fractional calculus of variation in fractal spacetime, Nonlinear sci. Lett. A 1, 281-287 (2010)
[36]Yildirim, A.; Kocak, H.: Homotopy perturbation method for solving the space–time fractional advection–dispersion equation, Adv. water resour. 32, 1711-1716 (2009)
[37]Chen, S.; Liu, F.; Zhuang, P.; Anh, V.: Finite difference approximation for the fractional Fokker–plank equations, Appl. math. Model. 33, 256-273 (2009) · Zbl 1167.65419 · doi:10.1016/j.apm.2007.11.005
[38]He, J. H.: Homotopy perturbation technique, Comput. methods appl. Mech. engrg. 178, 257-262 (1999)
[39]Biazar, J.; Ghazvini, H.: Convergence of the homotopy perturbation method for partial differentil equations, Nonlinear anal. RWA 10, 2633-2640 (2009) · Zbl 1173.35395 · doi:10.1016/j.nonrwa.2008.07.002