zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A low memory solver for integral equations of Chandrasekhar type in the radiative transfer problems. (English) Zbl 1235.80048
Summary: The problems of radiative transfer give rise to interesting integral equations that must be faced with efficient numerical solver. Very often the integral equations are discretized to large-scale nonlinear equations and solved by Newton’s-like methods. Generally, these kind of methods require the computation and storage of the Jacobian matrix or its approximation. In this paper, we present a new approach that was based on approximating the Jacobian inverse into a diagonal matrix by means of variational technique. Numerical results on well-known benchmarks integral equations involved in the radiative transfer authenticate the reliability and efficiency of the approach. The fact that the proposed method can solve the integral equations without function derivative and matrix storage can be considered as a clear advantage over some other variants of Newton’s method.
MSC:
80M25Other numerical methods (thermodynamics)
80A20Heat and mass transfer, heat flow
65R20Integral equations (numerical methods)