zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison of feedback control methods for a hyperchaotic Lorenz system. (English) Zbl 1235.93111
Summary: More and more attention has been payed to the hyperchaotic system for the huge potential applications of hyperchaotic system such as secure communication and more complex structure than chaotic system. So at present the controlling of the hyperchaotic system simply and effectively is a frontier topic of nonlinear science. In this Letter, for the latest hyperchaotic Lorenz system, four feedback control methods were studied with analytic solution and necessary numerical simulations. It is found that the enhancing feedback control approach is the best choice of the given four feedback control methods for its relatively simple external inputs and relatively small necessary feedback coefficient after comparison. The conclusion is a helpful for the choice of control methods of any other chaotic and hyperchaotic systems.
93B52Feedback control
34H10Chaos control (ODE)
34C28Complex behavior, chaotic systems (ODE)
34A34Nonlinear ODE and systems, general
[1]Lorenz, E. N.: J. at. Sci., J. at. Sci. 20, 130 (1963)
[2]Ott, E.; Grebogi, C.; Yorke, J. A.: Phys. rev. Lett., Phys. rev. Lett. 64, 1196 (1990)
[3]Chen, G. R.; Dong, X.: From chaos to order: methodologies, perspectives and applications, (1998)
[4]Wang, Xingyuan; Wang, Mingjun: Physica A, Physica A 387, 3751 (2008)
[5]Yan, Zhenya; Yu, Pei: Chaos solitons fractals, Chaos solitons fractals 35, 333 (2008)
[6]Yan, Zhenya: Appl. math. Comput., Appl. math. Comput. 168, 1239 (2005)
[7]Dou, Fuquan: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 14, 552 (2009)
[8]Tao, Chaohai: Chaos solitons fractals, Chaos solitons fractals 23, 259 (2005)
[9]Tao, Chaohai; Liu, Xuefei: Chaos solitons fractals, Chaos solitons fractals 32, 1572 (2007)
[10]Tao, Chaohai: Phys. lett. A, Phys. lett. A 348, 201 (2006)
[11]Yang, Qigui: Nonlinear anal.: real world appl., Nonlinear anal.: real world appl. 10, 1601 (2009)
[12]Jia, Qiang: Phys. lett. A, Phys. lett. A 366, 217 (2007)
[13]Chen, Zengqiang: Phys. lett. A, Phys. lett. A 360, 696 (2007)