zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. (English) Zbl 1235.93145
Summary: This paper presents a new adaptive terminal sliding mode tracking control design for a class of nonlinear systems using fuzzy logic system. The Terminal Sliding Mode control (TSM) was developed to provide faster convergence and higher-precision control than the linear hyperplane-based sliding control. However, the original TSM encountered singularity problem with discontinuous control action. Moreover, a- priori knowledge about the plant to be controlled is required. The proposed controller combines a continuous non-singular TSM with an adaptive learning algorithm and fuzzy logic system to estimate the dynamics of the controlled plant so that closed-loop stability and finite-time convergence of tracking errors can be guaranteed. The performance of the proposed control strategy is evaluated through the control of a two-link rigid robotic manipulator. Finally, the effectiveness of the proposed scheme is demonstrated through the control of the ankle and knee movements in paraplegic subjects using functional electrical stimulation. Simulation and experimental results verify that the proposed control strategy can achieve favorable control performance with regard to system parameter variations and external disturbances.
MSC:
93C42Fuzzy control systems
93B12Variable structure systems
93C40Adaptive control systems
93A30Mathematical modelling of systems
References:
[1]Slotine, J. J. E.; Li, W.: Applied nonlinear control, (1991) · Zbl 0753.93036
[2]Utkin, V.; Guldner, J.; Shi, J.: Sliding mode control in electromechanical systems, (1999)
[3]Zhihong, M.; Paplinski, A. P.; Wu, H. R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE trans. Autom. control 39, 2464-2469 (1994) · Zbl 0825.93551 · doi:10.1109/9.362847
[4]Zhihong, M.; Yu, X. H.: Terminal sliding mode control of MIMO linear systems, IEEE trans. Circuits syst. I, fundam. Theory appl. 44, 1065-1070 (1997)
[5]Yu, X. H.; Zhihong, M.: Model reference adaptive control systems with terminal sliding modes, Int. J. Control 64, 1165-1176 (1996) · Zbl 0864.93068 · doi:10.1080/00207179608921680
[6]Wu, Y.; Yu, X.; Man, Z.: Terminal sliding mode control design for uncertain dynamic systems, Syst. control lett. 34, 281-287 (1998) · Zbl 0909.93005 · doi:10.1016/S0167-6911(98)00036-X
[7]Feng, Y.; Yu, X.; Man, Z.: Non-singular terminal sliding mode control of rigid manipulators, Automatica 38, 2159-2167 (2002) · Zbl 1015.93006 · doi:10.1016/S0005-1098(02)00147-4
[8]Tao, C. W.; Taur, J. S.; Chan, M. L.: Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties, IEEE trans. Syst. man cybern. B. cybern. 34, 255-262 (2004)
[9]Yu, S.; Yu, X.; Zadeh, B. Shirin; Mand, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41, 1957-1964 (2005) · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[10]Lin, C. K.: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks, IEEE trans. Fuzzy syst. 14, 849-859 (2006)
[11]Wang, L.; Chai, T.; Zhai, L.: Neural-network-based terminal sliding mode control of robotic manipulators including actuator dynamics, IEEE trans. Ind. electron. 9, 3296-3304 (2009)
[12]Labiod, S.; Boucherit, M. S.; Guerra, T. M.: Adaptive fuzzy control of a class of MIMO nonlinear systems, Fuzzy sets syst. 151, 59-77 (2005) · Zbl 1142.93365 · doi:10.1016/j.fss.2004.10.009
[13]Wang, L. X.: Adaptive fuzzy systems and control: design and stability analysis, (1994)
[14]Graupe, D.; Kohn, K. H.: Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics, Surg. neurol. 50, 202-207 (1998)
[15]Graupe, D.; Davis, R.; Kordylewski, H.; Kohn, K.: Ambulation by traumatic T4 – T12 paraplegics using functional neuromuscular stimulation, Crit. rev. Neurosurg. 8, 221-231 (1998)
[16]Popovic, D.; Sinkjaer, T.: Control of movement for the physically disabled, (2000)
[17]Agarwal, S.; Triolo, R. J.; Kobetic, R.: Long-term user perceptions of an implanted neuroprosthesis for exercise, standing, and transfers after spinal cord injury, J. rehabil. Res. dev. 40, 241-252 (2003)
[18]Abbas, J. J.; Chizeck, H. J.: Feedback control of coronal plane hip angle in paraplegic subjects using functional neuromuscular stimulation, IEEE trans. Biomed. eng. 38, 687-698 (1991)
[19]Lan, N.; Crago, P. E.; Chizeck, H. J.: Control of end-point forces of multi-joint limb by functional electrical stimulation, IEEE trans. Biomed. eng. 38, 935-965 (1991)
[20]Bernotas, L. A.; Crago, P. E.; Chizeck, H. J.: Adaptive control of electrically stimulated muscle, IEEE trans. Biomed. eng. 34, 140-147 (1987)
[21]Hawell, M. S.; Oderkek, B. J.; Sacher, C. A.; Inbar, G. F.: The development of a model reference adaptive controller to control the knee joint of paraplegics, IEEE trans. Automat. control 36, 683-691 (1991)
[22]Abbas, J. J.; Chizeck, H. J.: Feedback control methods for task regulation by electrical stimulation of muscle, IEEE trans. Biomed. eng. 38, 1213-1223 (1991)
[23]Previdi, F.; Carpanzano, E.: Design of a gain scheduling controller for knee-joint angle control by using functional electrical stimulation, IEEE trans. Control syst. Technol. 11, 310-324 (2003)
[24]Chang, G. C.; Luh, J. J.; Liao, G. D.; Lai, J. S.; Cheng, C. K.; Kuo, B. L.; Kuo, T. S.: A neuro-control system for the knee joint position control with quadriceps stimulation, IEEE trans. Rehabil. eng. 5, 2-11 (1997)
[25]Ferrarin, M.; Palazzo, F.; Riener, R.: Model based control of FES induced single joint movements, IEEE trans. Neural syst. Rehabil. eng. 9, 245-257 (2001)
[26]Abbas, J. J.; Chizeck, H. J.: Neural network control of functional neuromuscular stimulation systems: computer simulation studies, IEEE trans. Biomed. eng. 42, 1117-1127 (1995)
[27]Abbas, J. J.; Triolo, R. J.: Experimental evaluation of an adaptive feedforward controller for use in functional neuromuscular stimulation systems, IEEE trans. Rehabil. eng. 5, 12-22 (1997)
[28]Riess, J.; Abbas, J. J.: Adaptive neural control of cyclic movements using functional neuromuscular stimulation, IEEE trans. Rehabil. eng. 8, 42-52 (2000)
[29]Reiss, J.; Abbas, J. J.: Adaptive control of cyclic movements as muscles fatigue using functional neuromuscular stimulation, IEEE trans. Neural syst. Rehabil. eng. 9, 326-330 (2001)
[30]A.R. Mirizarandi, A. Erfanian, H.R. Kobravi, Adaptive inverse control of knee joint position in paraplegic subjects using recurrent neural network, in: 10th Annual Conference of the International Functional Electrical Stimulation Society, Montreal, QC, Canada, 2005.
[31]Kurosawa, K.; Futami, R.; Watanabe, T.; Hoshimiya, N.: Joint angle control by FES using a feedback error learning controller, IEEE trans. Neural syst. Rehabil. eng. 13, 359-371 (2005)
[32]Ioannou, P. A.; Sun, J.: Robust adaptive control, (1996) · Zbl 0839.93002
[33]Hongliu, D.; Nair, S. S.: Learning control design for a class of nonlinear systems, Eng. appl. Artif. intell. 11, 495-505 (1998)
[34]Zhang, T.; Ge, S. S.; Hang, C. C.; Chai, T. Y.: Adaptive control of first order systems with nonlinear parameterization, IEEE trans. Automat. contr. 45, 1512-1516 (2000) · Zbl 0988.93043 · doi:10.1109/9.871761
[35]Miller, D. E.: A new approach to model reference adaptive control, IEEE trans. Automat. control 48, 743-757 (2003)
[36]Ajoudani, A.; Erfanian, A.: A neuro-sliding mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation, IEEE trans. Biomed. eng. 56, 1771-1780 (2009)
[37]Kobravi, H. R.; Erfanian, A.: Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist – antagonist muscles, J. neural eng. 6, 1-10 (2009)
[38]H.R. Kobravi, A. Erfanian, A transcutanous computer-based closed-loop motor neuroprosthesis for real-time movement control, in: Proceedings of the Ninth Annual Conference of the International Functional Electrical Stimulation Society, UK, 2004.