zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Further analysis on uniform stability of impulsive infinite delay differential equations. (English) Zbl 1236.34098
Summary: A criterion for the uniform stability of impulsive functional differential equations with infinite delays is presented by using Lyapunov functions and the Razumikhin technique. The criterion is more general than several recent works. An example is given showing the effectiveness and advantage of the present criterion.
MSC:
34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
References:
[1]Anokhin, A.: On linear impulsive systems for functional differential equations, Soviet mathematics doklady 33, 220-223 (1986) · Zbl 0615.34064
[2]Gopalsamy, K.; Zhang, B.: On delay differential equations with impulses, Journal of mathematical analysis and applications 139, 110-122 (1989) · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1
[3]Liu, X.; Wang, Q.: On stability in terms of two measures for impulsive systems of functional differential equations, Journal of mathematical analysis and applications 326, 252-265 (2007) · Zbl 1112.34059 · doi:10.1016/j.jmaa.2006.02.059
[4]Shen, J.: Razumikhin techniques in impulsive functional differential equations, Nonlinear analysis: theory, methods and applications 36, 119-130 (1999) · Zbl 0939.34071 · doi:10.1016/S0362-546X(98)00018-2
[5]Stamova, I.; Stamov, G.: Lyapunov–razumikhin method for impulsive functional differential equations and applications to the population dynamics, Journal of computational and applied mathematics 130, 163-171 (2001) · Zbl 1022.34070 · doi:10.1016/S0377-0427(99)00385-4
[6]Ignatyev, A.: On the stability of invariant sets of systems with impulse effect, Nonlinear analysis: theory, methods and applications 69, 53-72 (2008) · Zbl 1145.34032 · doi:10.1016/j.na.2007.04.040
[7]Luo, Z.; Shen, J.: New razumikhin type theorems for impulsive functional differential equations, Applied mathematics and computation 125, 375-386 (2002) · Zbl 1030.34078 · doi:10.1016/S0096-3003(00)00139-9
[8]Luo, Z.; Shen, J.: Stability of impulsive functional differential equations via the Lyapunov functional, Applied mathematics letters 22, 163-169 (2009)
[9]Luo, Z.; Shen, J.: Stability and boundedness for impulsive functional differential equations with infinite delays, Nonlinear analysis: theory, methods and applications 46, 475-493 (2001) · Zbl 0997.34066 · doi:10.1016/S0362-546X(00)00123-1
[10]Luo, Z.; Shen, J.: Stability results for impulsive functional differential equations with infinite delays, Journal of computational and applied mathematics 131, 55-64 (2001) · Zbl 0988.34059 · doi:10.1016/S0377-0427(00)00323-X
[11]Zhang, Y.; Sun, J.: Stability of impulsive infinite delay differential equations, Applied mathematics letters 19, 1100-1106 (2006) · Zbl 1125.34345 · doi:10.1016/j.aml.2005.09.016
[12]Fu, X.; Li, X.: Razumikhin-type theorems on exponential stability of impulsive infinite delay differential systems, Journal of computational and applied mathematics 224, 1-10 (2009) · Zbl 1179.34079 · doi:10.1016/j.cam.2008.03.042
[13]Li, X.: Uniform asymptotic stability and global stability of impulsive infinite delay differential equations, Nonlinear analysis: theory, methods and applications 70, 1975-1983 (2009) · Zbl 1175.34094 · doi:10.1016/j.na.2008.02.096
[14]Li, X.: New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays, Nonlinear analysis series B: real world applications 11, 4194-4201 (2010) · Zbl 1210.34103 · doi:10.1016/j.nonrwa.2010.05.006
[15]Shen, J.: Existence and uniqueness of solutions for a class of infinite delay functional differential equations with applications to impulsive differential equations, Journal of huaihua teachers college 15, 45-51 (1996)