zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The dynamics of a stage-structured predator-prey system with impulsive effect and Holling mass defence. (English) Zbl 1236.34106
Summary: A stage-structured Holling mass defence predator-prey model with impulsive effect is investigated. By using comparison theorem and the stroboscopic technique, sufficient conditions for the global attractivity of mature prey-extinction periodic solution and permanence of the system are obtained. Furthermore, the numerical analysis is also inserted to illuminate the feasibility of the theoretical results.
34K45Functional-differential equations with impulses
34K60Qualitative investigation and simulation of models
92D25Population dynamics (general)
37N05Dynamical systems in classical and celestial mechanics
34K13Periodic solutions of functional differential equations
34K20Stability theory of functional-differential equations
[1]Clark, C. W.: Mathematical bioeconomics, (1990)
[2]Jiang, X. W.; Song, Q.; Hao, M. Y.: Dynamics behaviors of a delayed stage-structured predator-prey model with impulsive effect, Appl. math. Comput. 215, 4221-4229 (2010) · Zbl 1184.92054 · doi:10.1016/j.amc.2009.12.044
[3]Coltman, D. W.; Donoghue, P. O.; Jorgenson, J. T.; Hogg, J. T.; Strobeck, C.; Festa-Bianchet, M.: Undesirable evolutionary consequences of trophy hunting, Nature 426, No. 6967, 655-658 (2003)
[4]Conover, D. O.; Munch, S. B.: Sustaining fisheries yields over evolutionary time scales, Science 297, No. 5578, 94-96 (2002)
[5]Haugen, T.; Volestad, L. A.: A century of life-history evolution in grayling, Genetica 112-113, 475-491 (2001)
[6]Heino, M.; Gods, O. R.: Fisheries-induced selection pressures in the context of sustainable fisheries, Bull. mar. Sci. 70, 639-656 (2002)
[7]Ling, L.; Wang, W. M.: Dynamics of a ivlev-type predator – prey system with constant rate harvesting, Chaos soliton fract. 41, 2139-2153 (2009) · Zbl 1198.34061 · doi:10.1016/j.chaos.2008.08.024
[8]Olsen, E. M.; Heino, M.; Lilly, G. R.; Morgan, M. J.; Brattey, J.; Ernande, B.; Dieckmann, U.: Maturation trends indicative of rapid evolution preceded the collapse of northern cod, Nature 428, 932-935 (2004)
[9]Hui, J.; Zhu, D.: Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects, Chaos soliton fract. 29, 233-251 (2006) · Zbl 1095.92067 · doi:10.1016/j.chaos.2005.08.025
[10]Liu, B.; Chen, L. S.: The periodic competing Lotka – Volterra model with impulsive effect, IMA J. Math. med. Biol. 21, 129-145 (2004) · Zbl 1055.92056 · doi:10.1093/imammb/21.2.129
[11]Liu, B.; Zhang, Y.; Chen, L. S.: The dynamical behaviors of a Lotka – Volterra predator-prey model concerning integrated pest management, Nonlinear anal. RWA 6, 227-243 (2005) · Zbl 1082.34039 · doi:10.1016/j.nonrwa.2004.08.001
[12]D’onofrio, A.: Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures, Math. comput. Model. 36, 473-489 (2002) · Zbl 1025.92011 · doi:10.1016/S0895-7177(02)00177-2
[13]Zhang, H.; Georgescu, P.; Chen, L. S.: An impulsive predator – prey system with beddington – deangelis functional response and time delay, Int. J. Biomath. 1, 1-17 (2008) · Zbl 1155.92045 · doi:10.1142/S1793524508000072
[14]Aiello, W. G.; Freedman, H. I.: A time-delay model of single-species growth with stage structure, Math. biosci. 101, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[15]Chen, F. D.; You, M. S.: Permanence, extinction and periodic solution of the predator-prey system with beddington – deangelis functional response and stage structure for prey, Nonlinear anal. RWA 9, 207-221 (2008) · Zbl 1142.34051 · doi:10.1016/j.nonrwa.2006.09.009
[16]Freedman, H. I.; Gopalsamy, K.: Global stability in time-delayed single species dynamics, Bull. math. Biol. 48, 485-492 (1986) · Zbl 0606.92020
[17]Gourley, S. A.; Kuang, Y.: A stage structured predator – prey model and its dependence on maturation delay and death rate, J. math. Biol. 49, 188-200 (2004) · Zbl 1055.92043 · doi:10.1007/s00285-004-0278-2
[18]Song, X. Y.; Chen, L. S.: Modelling and analysis of a single species system with stage structure and harvesting, Math. comput. Model. 36, 67-82 (2002) · Zbl 1024.92015 · doi:10.1016/S0895-7177(02)00104-8
[19]Wang, X.; Wang, W.; Lin, X.: Chaotic behavior of a watt-type predator-prey system with impulsive control strategy, Chaos soliton fract. 37, 706-718 (2008) · Zbl 1141.34027 · doi:10.1016/j.chaos.2006.09.050
[20]Kuang, Y.: Delay differential equation with application in population dynamics, (1993) · Zbl 0777.34002
[21]Li, Y. K.; Kuang, Y.: Periodic solutions of periodic delay Lotka – Volterra equations and systems, J. math. Anal. appl. 255, 260-280 (2001) · Zbl 1024.34062 · doi:10.1006/jmaa.2000.7248
[22]Holmes, J. C.; Bethel, W. M.: Modification of intermediate host behavior parasites, Zool. J. Linnean soc. 51, 123-149 (1972)
[23]Freedman, H. I.; Wolkowicz, G. S. K.: Predator – prey systems with group defence: the paradox of enrichment revisited, Bull. math. Biol. 48, 493-508 (1986) · Zbl 0612.92017
[24]Ruan, S.; Xiao, D.: Global analysis in a predator – prey system with nonmonotonic functional response, SIAM J. Appl. math. 61, No. 4, 1445-1472 (2000) · Zbl 0986.34045 · doi:10.1137/S0036139999361896
[25]Zhu, H.; Campbell, S.; Wolkowicz, G.: Bifurcation analysis of a predator – prey system with nonmonotonic functional response, SIAM J. Appl. math. 63, No. 2, 636-682 (2002) · Zbl 1036.34049 · doi:10.1137/S0036139901397285
[26]Jiao, J. J.; Meng, X. Z.; Chen, L. S.: A stage-structured Holling mass defence predator-prey model with impulsive perturbations on predators, Appl. math. Comput. 189, 1448-1458 (2007) · Zbl 1117.92053 · doi:10.1016/j.amc.2006.12.043
[27]Liu, Z. J.; Tan, R. H.: Impulsive harvesting and stocking in a monod – Haldane functional response predator-prey system, Chaos soliton fract. 34, 454-464 (2007) · Zbl 1127.92045 · doi:10.1016/j.chaos.2006.03.054
[28]Andrews, J. F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. bioeng. 10, 707-723 (1968)
[29]Jiao, J. J.; Meng, X. Z.; Chen, L. S.: Harvesting policy for a delayed stage-structured Holling II predator – prey model with impulsive stocking prey, Chaos soliton fract. 41, 103-112 (2009) · Zbl 1198.34153 · doi:10.1016/j.chaos.2007.11.015
[30]Jiao, J. J.; Pang, G. P.; Chen, L. S.; Luo, G. L.: A delayed stage-structured predator – prey model with impulsive stocking on prey and continuous harvesting on predator, Appl. math. Comput. 195, 316-325 (2008) · Zbl 1126.92052 · doi:10.1016/j.amc.2007.04.098
[31]Song, X. Y.; Hao, M. Y.; Meng, X. Z.: A stage-structured predator – prey model with disturbing pulse and time delays, Appl. math. Model. 33, 211-223 (2009) · Zbl 1167.34372 · doi:10.1016/j.apm.2007.10.020
[32]Shao, Y.; Dai, B.: The dynamics of an impulsive delay predator – prey model with stage structure and beddington-type functional response, Nonlinear anal. RWA 11, 3567-3576 (2010) · Zbl 1218.34099 · doi:10.1016/j.nonrwa.2010.01.004
[33]Bainov, D.; Simeonov, P.: Impulsive differential equations: periodic solutions and applications, (1993)
[34]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[35]Bainov, D.; Simeonov, P.: System with impulsive effect: stability theory and applications, (1989) · Zbl 0683.34032
[36]Song, X. Y.; Chen, L. S.: Optimal harvesting and stability for a two species competitive system with stage structure, Math. biosci. 170, 173-186 (2001) · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7