zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. (English) Zbl 1236.47066
Summary: We consider the split feasibility problem (SFP) in infinite-dimensional Hilbert spaces, and study the relaxed extragradient methods for finding a common element of the solution set 𝛤 of SFP and the set Fix(S) of fixed points of a nonexpansive mapping S. Combining Mann’s iterative method and Korpelevich’s extragradient method, we propose two iterative algorithms for finding an element of Fix(S)𝛤. On the one hand, for S=I, the identity mapping, we derive the strong convergence of one iterative algorithm to the minimum-norm solution of the SFP under appropriate conditions. On the other hand, we also derive the weak convergence of another iterative algorithm to an element of Fix(S)𝛤 under mild assumptions.
MSC:
47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
65J20Improperly posed problems; regularization (numerical methods in abstract spaces)
65J22Inverse problems (numerical methods in abstract spaces)
References:
[1]Censor, Y.; Elfving, T.: A multiprojection algorithm using Bregman projections in a product space, Numer. algorithms 8, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[2]Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse problems 18, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[3]Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. med. Biol. 51, 2353-2365 (2006)
[4]Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems, Inverse problems 21, 2071-2084 (2005) · Zbl 1089.65046 · doi:10.1088/0266-5611/21/6/017
[5]Censor, Y.; Motova, A.; Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. math. Anal. appl. 327, 1244-1256 (2007)
[6]Censor, Y.; Segal, A.: Iterative projection methods in biomedical inverse problems, Mathematical methods in biomedical imaging and intensity-modulated therapy, 65-96 (2008)
[7]Combettes, P. L.; Wajs, V.: Signal recovery by proximal forward–backward splitting, Multiscale model. Simul. 4, 1168-1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[8]Qu, B.; Xiu, N.: A note on the CQ algorithm for the split feasibility problem, Inverse problems 21, 1655-1665 (2005) · Zbl 1080.65033 · doi:10.1088/0266-5611/21/5/009
[9]Sezan, M. I.; Stark, H.: Applications of convex projection theory to image recovery in tomography and related areas, Image recovery theory and applications, 415-462 (1987)
[10]Xu, H. K.: A variable Krasnoselskii–Mann algorithm and the multiple-set split feasibility problem, Inverse problems 22, 2021-2034 (2006) · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[11]Xu, H. K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse problems 26, 105018 (2010) · Zbl 1213.65085 · doi:10.1088/0266-5611/26/10/105018
[12]Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem, Inverse problems 20, 1261-1266 (2004) · Zbl 1066.65047 · doi:10.1088/0266-5611/20/4/014
[13]Zhao, J.; Yang, Q.: Several solution methods for the split feasibility problem, Inverse problems 21, 1791-1799 (2005) · Zbl 1080.65035 · doi:10.1088/0266-5611/21/5/017
[14]Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse problems 20, 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[15]Censor, Y.; Gibali, A.; Reich, S.: Algorithms for the split variational inequality problem, Numer. algorithms (2011)
[16]Eicke, B.: Iteration methods for convexly constrained ill-posed problems in Hilbert spaces, Numer. funct. Anal. optim. 13, 413-429 (1992) · Zbl 0769.65026 · doi:10.1080/01630569208816489
[17]Landweber, L.: An iterative formula for Fredholm integral equations of the first kind, Amer. J. Math. 73, 615-624 (1951) · Zbl 0043.10602 · doi:10.2307/2372313
[18]Korpelevich, G. M.: An extragradient method for finding saddle points and for other problems, Ekonomika mat. Metody 12, 747-756 (1976)
[19]Nadezhkina, N.; Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. optim. Theory appl. 128, 191-201 (2006) · Zbl 1130.90055 · doi:10.1007/s10957-005-7564-z
[20]Nadezhkina, N.; Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz continuous monotone mappings, SIAM J. Optim. 16, 1230-1241 (2006) · Zbl 1143.47047 · doi:10.1137/050624315
[21]Geobel, K.; Kirk, W. A.: Topics in metric fixed point theory, Cambridge studies in advanced mathematics 28 (1990) · Zbl 0708.47031
[22]Bertsekas, D. P.; Gafni, E. M.: Projection methods for variational inequalities with applications to the traffic assignment problem, Math. program. Stud. 17, 139-159 (1982) · Zbl 0478.90071
[23]Han, D.; Lo, H. K.: Solving non-additive traffic assignment problems: a descent method for co-coercive variational inequalities, European J. Oper. res. 159, 529-544 (2004) · Zbl 1065.90015 · doi:10.1016/S0377-2217(03)00423-5
[24]Combettes, P. L.: Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization 53, No. 5–6, 475-504 (2004) · Zbl 1153.47305 · doi:10.1080/02331930412331327157
[25]Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. amer. Math. soc. 73, 595-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[26]Browder, F. E.: Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. natl. Acad. sci. USA 43, 1272-1276 (1965) · Zbl 0125.35801 · doi:10.1073/pnas.53.6.1272
[27]Xu, H. K.; Kim, T. H.: Convergence of hybrid steepest-descent methods for variational inequalities, J. optim. Theory appl. 119, 185-201 (2003) · Zbl 1045.49018 · doi:10.1023/B:JOTA.0000005048.79379.b6
[28]Xu, H. K.; Ori, R. G.: An implicit iteration process for nonexpansive mappings, Numer. funct. Anal. optim. 22, 767-773 (2001) · Zbl 0999.47043 · doi:10.1081/NFA-100105317
[29]Zeng, L. C.; Yao, J. C.: Implicit iteration scheme with perturbed mapping for common fixed points of a finite family of nonexpansive mappings, Nonlinear anal. 64, 2507-2515 (2006) · Zbl 1105.47061 · doi:10.1016/j.na.2005.08.028