zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal Steffensen-type methods with eighth order of convergence. (English) Zbl 1236.65056
Summary: We propose two classes of three-step without memory iterations based on the well known second-order method of Steffensen. Per computing step, the methods from the developed classes reach the order of convergence eight using only four evaluations, while they are totally free from derivative evaluation. Hence, they agree with the optimality conjecture of Kung-Traub for providing multi-point iterations without memory. As things develop, numerical examples are employed to support the underlying theory developed for the contributed classes of optimal Steffensen-type eighth-order methods.
MSC:
65H05Single nonlinear equations (numerical methods)
References:
[1]Sargolzaei, P.; Soleymani, F.: Accurate fourteenth-order methods for solving nonlinear equations, Numerical algorithms (2011)
[2]Soleymani, F.; Sharifi, M.: On a general efficient class of four-step root-finding methods, International journal of mathematics and computers in simulation 5, 181-189 (2011)
[3]Iliev, A.; Kyurkchiev, N.: Nontrivial methods in numerical analysis, Selected topics in numerical analysis (2010)
[4]Wang, X.; Liu, L.: New eighth-order iterative methods for solving nonlinear equations, Journal of computational and applied mathematics 234, 1611-1620 (2010) · Zbl 1190.65081 · doi:10.1016/j.cam.2010.03.002
[5]Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iteration, Journal of ACM 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[6]Soleymani, F.; Sharifi, M.; Mousavi, B. S.: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight, Journal of optimization theory and applications (2011)
[7]F. Soleymani, S. Karimi Vanani, A. Afghani, A general three-step class of optimal iterations for nonlinear equations, Mathematical Problems in Engineering, 10. doi:10.1155/2011/469512. Article ID 469512.
[8]Soleymani, F.; Vanani, S. Karimi; Khan, M.; Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence, Mathematical and computer modelling (2011)
[9]Steffensen, J. F.: Remarks on iteration, Skand aktuar tidsr 16, 64-72 (1933) · Zbl 0007.02601
[10]Zheng, Q.; Li, J.; Huang, F.: An optimal Steffensen-type family for solving nonlinear equations, Applied mathematics and computation 217, 9592-9597 (2011) · Zbl 1227.65044 · doi:10.1016/j.amc.2011.04.035
[11]Soleymani, F.: On a bi-parametric class of optimal eighth-order derivative-free methods, International journal of pure and applied mathematics 72, 27-37 (2011)
[12]Yun, B. I.: A non-iterative method for solving non-linear equations, Applied mathematics and computation 198, 691-699 (2008) · Zbl 1138.65035 · doi:10.1016/j.amc.2007.09.006