zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Efficient spectral Legendre dual-Petrov-Galerkin algorithms for the direct solution of (2n+1)th-order linear differential equations. (English) Zbl 1236.65087
Summary: Some efficient and accurate algorithms based on the Legendre dual-Petrov Galerkin method are developed and implemented for solving (2n+1)th-order linear differential equations in one variable subject to homogeneous and nonhomogeneous boundary conditions using a spectral discretization. The key idea to the efficiency of the algorithms is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The method leads to linear systems with specially structured matrices that can be efficiently inverted. Numerical results are presented to demonstrate the efficiency of the proposed algorithms.
MSC:
65L10Boundary value problems for ODE (numerical methods)
94B05General theory of linear codes
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
65M70Spectral, collocation and related methods (IVP of PDE)
65N35Spectral, collocation and related methods (BVP of PDE)
35C10Series solutions of PDE
42C10Fourier series in special orthogonal functions