zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A variational approach for evaluation of stress intensity factors using the element free Galerkin method. (English) Zbl 1236.74093
Summary: A variational meshfree method has been developed to evaluate the stress intensity factors of mixed mode crack problems. The stiffness is evaluated by regular domain integrals and shape functions are determined by both the radial basis function (RBF) interpolation and the moving least-square (MLS) method. The stress intensity factors are obtained by two boundary integrals with variation of crack length. Applications of the proposed technique to two-dimensional fracture mechanics have been presented and comparisons are made with benchmark solutions. Finally, the application of the proposed method to modelling fatigue crack growth is presented.
74G70Stress concentrations, singularities
74G65Energy minimization (equilibrium problems in solid mechanics)
74S30Other numerical methods in solid mechanics
[1]Aliabadi, M. H.; Rooke, D. P.: Numerical fracture mechanics, (1991) · Zbl 0769.73001
[2]Aliabadi, M. H.; Cartwright, D. J.; Rooke, D. P.: Fracture-mechanics weight-functions by the removal of singular fields using boundary element analysis, International journal of fracture 40, No. 4, 271-284 (1989)
[3]Asferg, J. L.; Poulsen, P. N.; Nielson, L. O.: A consistent partly called XFEM element for cohesive crack, growth, International journal for numerical methods in engineering 72, 464-515 (2007) · Zbl 1194.74359 · doi:10.1002/nme.2023
[4]Atluri, S. N.; Zhu, T.: A new meshless local Petrov – Galerkin (MLPG) approach to nonlinear problems in computational modelling and simulation, Computer modeling and simulation in engineering 3, 187-196 (1998)
[5]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering 45, 6001-6020 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[6]Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin method, International journal for numerical methods in engineering 37, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[7]Carpinteri, A.; Ferro, G.; Ventura, G.: The partition of unity quadrature in element-free crack modeling, Computers & structures 81, 1783-1794 (2003)
[8]Duflot, M.; Nguyen-Dang, H.: A meshless method with enriched weight functions for fatigue crack growth, Int. J. Numerical methods in engineering 59, 1945-1961 (2004) · Zbl 1060.74664 · doi:10.1002/nme.948
[9]Fleming, M.; Chu, Y. A.; Moran, B.; Belytschko, T.; Lu, Y. Y.; Gu, L.: Enriched element-free Galerkin methods for crack-tip fields, International journal for numerical methods in engineering 40, 1483-1504 (1995)
[10]Golgerg, M. A.; Chen, C. S.; Karur, S. R.: Improved multiquadric approximation for partial differential equations, Engineering analysis with boundary elements 18, 9-17 (1996)
[11]Hardy, R. L.: Multiquadric equations of topography and other irregular surface, Journal of geophysical research 76, 1905-1915 (1971)
[12]Hellen, T. K.: On the method of virtual crack extension, International journal for numerical methods in engineering 9, 187-207 (1975) · Zbl 0293.73049 · doi:10.1002/nme.1620090114
[13]Henshell, R. D.; Shaw, K. G.: Crack tip finite elements in linear elastic fracture mechanics, International journal for numerical methods in engineering 10, 25-37 (1976)
[14]Kansa, E. J.: A scattered data approximation scheme with applications to computational fluid-dynamics. I. surface approximations and partial derivative estimates, Computer & mathematics with applications 19, No. 8 – 9, 127-145 (1991) · Zbl 0692.76003 · doi:10.1016/0898-1221(90)90270-T
[15]Kansa, E. J.: A scattered data approximation scheme with applications to computational fluid-dynamics. II. surface solutions to parabolic, hyperbolic and elliptic partial differential equations, Computer & mathematics with applications 19, No. 8-9, 147-161 (1991) · Zbl 0850.76048 · doi:10.1016/0898-1221(90)90271-K
[16]Kim, K.; Lee, H.: An incremental formulation for the prediction of two-dimensional fatigue crack growth with curved paths, International journal for numerical methods in engineering 72, 697-721 (2007) · Zbl 1194.74498 · doi:10.1002/nme.2031
[17]Lucht, T.; Aliabadi, M. H.: Correction to the crack extension direction in numerical modeling of mixed mode crack paths, International journal of fracture 143, 195-202 (2007)
[18]Mohit, P.; Singh, I. V.; Mishra, B. K.; Kamal, S.; Khan, I. A.: Mesh-free solution of two-dimensional edge crack problems under thermo-mechanical load, Journal of ASTM international 7, No. 5 (2010)
[19]Moran, B.; Shih, C. F.: A general treatment of crack tip contour integrals, International journal of fracture 35, 295-310 (1987)
[20]Organ, D.; Fleming, M.; Terry, T.; Belytschko, T.: Continuous meshless approximations for convex bodies by diffraction and transparency, Computational mechanics 18, 1-11 (1996) · Zbl 0864.73076 · doi:10.1007/BF00369940
[21]Portela, A.; Aliabadi, M. H.; Rooke, D. P.: The dual boundary element method: effective implementation for crack problems, International journal for numerical methods in engineering 33, No. 6, 1269-1287 (1992) · Zbl 0825.73908 · doi:10.1002/nme.1620330611
[22]Portela, A.; Aliabadi, M. H.; Rooke, D. P.: Dual boundary element analysis of cracked plates: singularity subtraction technique, International journal of fracture 55, 17-28 (1992)
[23]Rao, B. N.; Rahman, S. A.: Coupled meshless-finite element method for fracture analysis of cracks, International journal of pressure vessels and piping 78, 647-657 (2001)
[24]Rao, B. N.; Rahman, S.: Mesh-free analysis of cracks in isotropic functionally graded materials, Engineering fracture mechanics 70, No. 1, 1-27 (2003)
[25]Rooke, D. P.; Cartwright, D. J.: A compendium of stress intensity factors, (1976)
[26]Simonsen, B.; Cerup, L.: Mesh-free simulation of ductile fracture, International journal for numerical methods in engineering 60, No. 8, 1425-1450 (2004) · Zbl 1060.74673 · doi:10.1002/nme.1009
[27]Sladek, J.; Sladek, V.: Boundary element analysis for an interface crack between dissimilar elastoplastic materials, Computational mechanics 16, No. 6, 396-405 (1995) · Zbl 0848.73076 · doi:10.1007/s004660050082
[28]Sladek, J.; Sladek, V.; Zhang, Ch.: A meshless local boundary integral equation method for dynamic anti-plane shear crack problem in functionally graded materials, Engineering analysis with boundary elements 29, No. 4, 334-342 (2005) · Zbl 1182.74259 · doi:10.1016/j.enganabound.2004.05.005
[29]Sladek, J.; Sladek, V.; Wunsche, M.; Zhang, C.: Interface crack problems in anisotropic solids analyzed by the MLPG, CMES – computer modeling in engineering & sciences 54, 223-252 (2009) · Zbl 1231.74384 · doi:10.3970/cmes.2009.054.223
[30]Sollero, P.; Aliabadi, M. H.: Anisotropic analysis of cracks in composite laminates using the dual boundary element method, Composite structures 31, 229-233 (1995)
[31]Steimmann, P.: Application of material forces to hyperelastostatic fracture mechanics I: Continuum mechanical setting, International journal for solids and structures 37, 7371-7391 (2000) · Zbl 0992.74008 · doi:10.1016/S0020-7683(00)00203-1
[32]Wen, P. H.; Aliabadi, M. H.: Applications of meshless method to fracture mechanics with enriched radial basis functions, Durability of structures and health monitoring 3, 107-119 (2007)
[33]Wen, P. H.; Aliabadi, M. H.: Evaluation of mixed-mode stress intensity factors by the mesh-free Galerkin method: static and dynamic, The journal of strain analysis for engineering design 44, No. 4, 273-286 (2009)
[34]Wen, P. H.; Aliabadi, M. H.; Rooke, D. P.: A contour integral method for dynamic stress intensity factors, Theoretical and applied fracture mechanics 27, 29-41 (1997)
[35]Wen, P. H.; Aliabadi, M. H.; Rooke, D. P.: A variational technique for boundary element analysis of 3d fracture mechanics weight functions: dynamic, Journal for numerical methods in engineering 42, No. 8, 1425-1439 (1998) · Zbl 0912.73075 · doi:10.1002/(SICI)1097-0207(19980830)42:8<1425::AID-NME427>3.0.CO;2-5
[36]Wen, P. H.; Aliabadi, M. H.; Rooke, D. P.: A variational technique for boundary element analysis of 3D fracture mechanics weight functions: static, International journal for numerical methods in engineering, No. 42, 1409-1423 (1998) · Zbl 0912.73074 · doi:10.1002/(SICI)1097-0207(19980830)42:8<1409::AID-NME426>3.0.CO;2-Z
[37]Wen, P. H.; Aliabadi, M. H.; Sladek, J.; Sladek, V.: Displacement discontinuity method for cracked orthotropic strip: dynamic, Wave motion 45, No. 3, 293-308 (2008) · Zbl 1231.74145 · doi:10.1016/j.wavemoti.2007.06.006
[38]Xu, Y.; Saigal, S.: Element free Galerkin study of steady quasi-static crack growth in plane strain tension in elastic – plastic materials, Computational mechanics 22, No. 3, 255-265 (1998) · Zbl 0958.74074 · doi:10.1007/s004660050358