zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A difference-fractal model for the permeability of fibrous porous media. (English) Zbl 1236.76070
Summary: In this Letter, a difference-fractal model for the permeability of viscous flow through fibrous porous media is proposed. Since fractal objects have well-defined geometric properties, and are discrete and discontinuous, we apply the difference approach to developing the fractal model. The model of non-dimensional permeability is expressed as a function of porosity and fractal dimension. To verify the validity of the proposed model, the predicted permeability values are compared with those of experimental measurements. A good agreement between the prediction of the fractal model and the existing experimental data from the literature is found.
MSC:
76S05Flows in porous media; filtration; seepage
76D99Incompressible viscous fluids
28A80Fractals
39A14Partial difference equations
References:
[1]Feser, J. P.; Prasad, A. K.; Advani, S. G.: J. power sources, J. power sources 162, 1226 (2006)
[2]Gostick, J. T.; Fowler, M. W.; Pritzker, M. D.; Ioannidis, M. A.; Behra, L. M.: J. power sources, J. power sources 162, 228 (2006)
[3]Singh, R.; Lavrykov, S.; Ramarao, B. V.: Colloids surf. A physicochem. Eng. asp., Colloids surf. A physicochem. Eng. asp. 333, 96 (2009)
[4]Sobera, M. P.; Kleijn, C. R.: Phys. rev. E, Phys. rev. E 74, 10 (2006)
[5]Tomadakis, M. M.; Robertson, T. J.: J. compos. Mater., J. compos. Mater. 39, 163 (2005)
[6]Wu, H. J.; Fan, J. T.; Du, N.: Int. J. Nonlinear sci. Num., Int. J. Nonlinear sci. Num. 10, 291 (2009)
[7]Chen, Q.; Wang, M. R.; Pan, N.; Guo, Z. Y.: Int. J. Nonlinear sci. Num. sim., Int. J. Nonlinear sci. Num. sim. 10, 57 (2009)
[8]Zhao, G. C. W.L.; He, J. H.: Int. J. Nonlinear sci. Num. sim., Int. J. Nonlinear sci. Num. sim. 10, 897 (2009)
[9]Yu, W. D.; Shi, X. J.: Int. J. Nonlinear sci. Num. sim., Int. J. Nonlinear sci. Num. sim. 10, 861 (2009)
[10]Brown, R. C.: Air filtration: an integrated approach to the theory and application of fibrous filters, (1993)
[11]Jackson, G. W.; James, D. F.: Can. J. Chem. eng., Can. J. Chem. eng. 64, 364 (1986)
[12]Kuwabara, S.: J. phys. Soc. jpn., J. phys. Soc. jpn. 14, 527 (1959)
[13]Happel, J.: Aiche J., Aiche J. 5, 174 (1959)
[14]Sangani, A. S.; Acrivos, A.: Int. J. Multiph. flow, Int. J. Multiph. flow 8, 193 (1982)
[15]Clague, D. S.; Phillips, R. J.: Phys. fluids, Phys. fluids 9, 1562 (1997)
[16]Hellou, M.; Martinez, J.; El Yazidi, M.: Mech. res. Commun., Mech. res. Commun. 31, 97 (2004)
[17]Tamayol, A.; Bahrami, M.: Int. J. Heat mass transfer, Int. J. Heat mass transfer 52, 2407 (2009)
[18]Gefen, Y.; Aharony, A.; Mandelbrot, B. B.; Kirkpatrick, S.: Phys. rev. Lett., Phys. rev. Lett. 47, 1771 (1981)
[19]Gefen, Y.; Mandelbrot, B. B.; Aharony, A.: Phys. rev. Lett., Phys. rev. Lett. 45, 855 (1980)
[20]Mandelbrot, B. B.: Phys. scr., Phys. scr. 32, 257 (1985)
[21]Mandelbrot, B. B.; Passoja, D. E.; Paullay, A. J.: Nature, Nature 308, 721 (1984)
[22]Meng, F. G.; Zhang, H. M.; Li, Y. S.; Zhang, X. W.; Yang, F. L.; Xiao, J. N.: Sep. purif. Technol., Sep. purif. Technol. 44, 250 (2005)
[23]Yu, B. M.; Feng, Y. J.; Zou, M. Q.; Huang, M. T.: Heat transf. Eng., Heat transf. Eng. 27, 54 (2006)
[24]Yu, B. M.: Appl. mech. Rev., Appl. mech. Rev. 61, 19 (2008)
[25]Yu, B. M.; Cheng, P.: Int. J. Heat mass transfer, Int. J. Heat mass transfer 45, 2983 (2002)
[26]Yu, B. M.; Lee, L. J.; Cao, H. Q.: Fractals: complex geom. Patterns scaling nat. Soc., Fractals: complex geom. Patterns scaling nat. Soc. 9, 155 (2001)
[27]Yu, B. M.; Li, B. W.: Phys. rev. E, Phys. rev. E 73, 8 (2006)
[28]He, J. H.; Wu, G. C.; Austin, F.: Nonlinear sci. Lett. A, Nonlinear sci. Lett. A 1, 1 (2010)
[29]Mandelbrot, B. B.: The fractal geometry of nature, (1982) · Zbl 0504.28001
[30]Yu, B. M.; Lee, L. J.: Polym. compos., Polym. compos. 23, 201 (2002)
[31]Yu, B. M.; Zou, M. Q.; Feng, Y. J.: Int. J. Heat mass transfer, Int. J. Heat mass transfer 48, 2787 (2005)
[32]Denn, M. M.: Process fluid mechanics, (1980)
[33]Sampson, W. W.: J. mater. Sci., J. mater. Sci. 38, 1617 (2003)
[34]Lifshutz, N.: INJ spring, INJ spring, 18 (2005)
[35]Tomadakis, M. M.; Sotirchos, S. V.: Aiche J., Aiche J. 39, 397 (1993)
[36]Ingmanson, W. L.; Andrews, B. D.; Johnson, R. C.: Tappi j., Tappi j. 42, 840 (1959)
[37]Kostornov, A. G.; Shevchuk, M. S.: Poroshk. metall., Poroshk. metall. 9, 50 (1977)
[38]Labrecque, R. P.: Tappi j., Tappi j. 51, 8 (1968)
[39]Wheat, J. A.: Can. J. Chem. eng., Can. J. Chem. eng. 41, 67 (1963)
[40]Lord, E.: J. textile inst., J. textile inst. 46, T191 (1959)
[41]Clarenburg, L. A.; Piekaar, H. W.: Chem. eng. Sci., Chem. eng. Sci. 23, 765 (1968)