zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. (English) Zbl 1236.92006
Summary: This Letter investigates the problem of delay-dependent exponential stability analysis for uncertain stochastic neural networks with time-varying delays. Based on the Lyapunov stability theory, improved delay-dependent exponential stability criteria for the networks are established in terms of linear matrix inequalities (LMIs).
MSC:
92B20General theory of neural networks (mathematical biology)
68T05Learning and adaptive systems
15A45Miscellaneous inequalities involving matrices
References:
[1]Ramesh, M.; Narayanan, S.: Chaos soliton fract., Chaos soliton fract. 12, 2395 (2001)
[2]Otawara, K.: Chaos soliton fract., Chaos soliton fract. 13, 353 (2002)
[3]Arik, S.: IEEE trans. Circuits syst., I: fundam. Theory appl., IEEE trans. Circuits syst., I: fundam. Theory appl. 47, 568 (2000)
[4]Cao, J.; Wang, J.: IEEE trans. Circuits syst. I, IEEE trans. Circuits syst. I 52, 417 (2005)
[5]Qiu, J.; Cao, J.: J. franklin inst., J. franklin inst. 346, 301 (2009)
[6]Wang, G.; Cao, J.; Liang, J.: Nonlinear dyn., Nonlinear dyn. 57, 209 (2009)
[7]Cao, J.; Feng, G.; Wang, Y.: Physica D, Physica D 237, 1734 (2008)
[8]Sun, Y.; Cao, J.: Asian J. Contr., Asian J. Contr. 10, 327 (2008)
[9]Li, X.; Cao, J.: Neural netw. World, Neural netw. World 16, 31 (2007)
[10]Xu, S.; Lam, J.; Ho, D. W. C.: Phys. lett. A., Phys. lett. A. 342, 322 (2005)
[11]Kwon, O. M.; Park, Ju H.: Appl. math. Comput., Appl. math. Comput. 205, 417 (2008)
[12]Kwon, O. M.; Park, J. H.: J. franklin inst., J. franklin inst. 345, 766 (2008)
[13]Li, T.; Guo, L.; Lin, C.; Sun, C.: Nonlinear analysis: real world appl., Nonlinear analysis: real world appl. 10, 554 (2009)
[14]Chen, W. -H.; Lu, X.: Phys. lett. A, Phys. lett. A 372, 1061 (2008)
[15]Wu, Y.; Wu, Y.; Chen, Y.: Neurocomputing, Neurocomputing 72, 2379 (2009)
[16]Zhang, B.; Xu, S.; Zong, G.; Zou, Y.: IEEE trans. Circuits syst. I, IEEE trans. Circuits syst. I 56, 1241 (2009)
[17]Haykin, S.: Neural networks – A comprehensive foundation, (1998)
[18]Boyd, S.; Ghaoui, L. El.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994)
[19]K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of IEEE Conf. Decision Contr., Australia, 2000, 2805 pp
[20]Arnold, L.: Stochastic differential equations: theory and applications, (1972)
[21]Xu, S.; Lam, J.; Mao, X.; Zou, Y.: Asian J. Contr., Asian J. Contr. 7, 419 (2005)
[22]Gouaisbaut, F.; Peaucelle, D.: Delay-dependent stability of time delay systems, (2006)