zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel delay-dependent criterion for delayed neural networks of neutral type. (English) Zbl 1236.92007
Summary: This Letter considers a robust stability analysis method for delayed neural networks of neutral type. By constructing a new Lyapunov functional, a novel delay-dependent criterion for the stability is derived in terms of LMIs (linear matrix inequalities). A less conservative stability criterion is derived by using nonlinear properties of the activation function of the neural networks. Two numerical examples are illustrated to show the effectiveness of the proposed method.
MSC:
92B20General theory of neural networks (mathematical biology)
68T05Learning and adaptive systems
15A45Miscellaneous inequalities involving matrices
References:
[1]Ramesh, M.; Narayanan, S.: Chaos solitons fractals, Chaos solitons fractals 12, 2395 (2001)
[2]Chua, L. O.; Yang, L.: IEEE trans. Circuit syst., IEEE trans. Circuit syst. 35, 1257 (1998)
[3]Cao, J.: Int. J. Syst. sci., Int. J. Syst. sci. 31, 1313 (2001)
[4]Cao, J.: Phys. lett. A, Phys. lett. A 261, 303 (1999)
[5]Demidenko, S.; Piuri, V.: Neurocomputing, Neurocomputing 48, 879 (2002)
[6]Park, J. H.; Kwon, O. M.: Modern phys. Lett. B, Modern phys. Lett. B 23, 1743 (2009)
[7]Arik, S.: IEEE trans. Circuits syst., IEEE trans. Circuits syst. 49, 1211 (2002)
[8]Park, J. H.: Appl. math. Comput., Appl. math. Comput. 181, 200 (2006)
[9]Singh, V.: Appl. math. Comput., Appl. math. Comput. 215, 3124 (2009)
[10]Park, Ju H.; Kwon, O. M.: Chaos solitons fractals, Chaos solitons fractals 41, 1174 (2009)
[11]Zhang, Q.; Wei, X. P.; Xu, J.: Nonlinear anal.: real world appl., Nonlinear anal.: real world appl. 8, 997 (2007)
[12]Lou, X. Y.; Cui, B. T.: Neurocomputing, Neurocomputing 70, 2566 (2007)
[13]Chen, Y.; Wu, Y.: Neurocomputing, Neurocomputing 72, 1065 (2009)
[14]Xu, S.; Lam, J.: Neural netw., Neural netw. 19, 76 (2006)
[15]Li, T.; Guo, L.; Sun, C.; Lin, C.: IEEE trans. Neural netw., IEEE trans. Neural netw. 19, 726 (2008)
[16]Feng, J.; Xu, S.; Zou, Y.: Neurocomputing, Neurocomputing 72, 2576 (2009)
[17]Park, Ju.H.; Kwon, O. M.; Lee, S. M.: Appl. math. Comput., Appl. math. Comput. 196, 236 (2008)
[18]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[19]Bellen, A.; Guglielmi, N.; Ruehli, A. E.: IEEE trans. Circuits syst. Regul. pap., IEEE trans. Circuits syst. Regul. pap. 76, 212 (1999)
[20]Brayton, R. K.: IBM J. Res. dev., IBM J. Res. dev. 12, 431 (1968)
[21]Niculescu, S. I.; Brogliato, B.: Eur. J. Control., Eur. J. Control. 5, 279 (1999)
[22]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)
[23]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994)