zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
State estimation for fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays. (English) Zbl 1236.93004
Summary: This paper deals with the problem of state estimation for fuzzy cellular neural networks (FCNNs) with time delay in the leakage term, discrete and unbounded distributed delays. In this paper, leakage delay in the leakage term is used to unstable the neuron states. It is challenging to develop a delay dependent condition to estimate the unstable neuron states through available output measurements such that the error-state system is globally asymptotically stable. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term, an improved delay-dependent stability criterion is derived in terms of linear matrix inequalities (LMIs). However, by using the free-weighting matrices method, a simple and efficient criterion is derived in terms of LMIs for estimation. The restriction such as the time-varying delay which was required to be differentiable or even its time-derivative which was assumed to be smaller than one, are removed. Instead, the time-varying delay is only assumed to be bounded. Finally, numerical examples and its simulations are given to demonstrate the effectiveness of the derived results.
MSC:
93A14Decentralized systems
34K36Fuzzy functional-differential equations
15A39Linear inequalities of matrices
93B07Observability
References:
[1]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE trans. Circuits syst. 35, No. 10, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[2]Chua, L. O.; Yang, L.: Cellular neural networks: applications, IEEE trans. Circuits syst. 35, No. 10, 1273-1290 (1988)
[3]T. Yang, L.B. Yang, C.W. Wu, L.O. Chua, Fuzzy cellular neural networks: theory, in: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, 1996, pp. 181–186.
[4]T. Yang, L.B. Yang, C.W. Wu, L.O. Chua, Fuzzy cellular neural networks: applications, in: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, 1996, pp. 225–230.
[5]Chen, W. H.; Lu, X. M.: Delay-dependent exponential stability of neural networks with variable delay: an LMI approach, IEEE trans. Circuits syst. II 53, 837-842 (2006)
[6]Huang, H.; Cao, J. D.: Exponential stability analysis of uncertain stochastic neural networks with multiple delays, Nonlinear anal. RWA 8, 646-653 (2007) · Zbl 1152.34387 · doi:10.1016/j.nonrwa.2006.02.003
[7]Li, C. D.; Chen, J. Y.: A new criterion for global robust stability of interval neural networks with discrete time delays, Chaos solitons fractals 31, 561-570 (2007) · Zbl 1143.34049 · doi:10.1016/j.chaos.2005.10.031
[8]Mathiyalagan, K.; Sakthivel, R.; Anthoni, S. M.: New stability and stabilization criteria for fuzzy neural networks with various activation functions, Phys. scr. 84, 015007 (2011) · Zbl 1219.82131 · doi:10.1088/0031-8949/84/01/015007
[9]Sakthivel, R.; Samidurai, R.; Anthoni, S. M.: New exponential stability criteria for stochastic BAM neural networks with impulses, Phys. scr. 82, 045802 (2010) · Zbl 1202.93101 · doi:10.1088/0031-8949/82/04/045802
[10]Liu, Z.; Zhang, H.; Wang, Z.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays, Neurocomputing 72, 1056-1064 (2009)
[11]Huang, T.: Robust stability of delayed fuzzy Cohen–Grossberg neural networks, Comput. math. Appl. 61, 2247-2250 (2011) · Zbl 1219.93094 · doi:10.1016/j.camwa.2010.09.037
[12]Huang, T.: Exponential stability of fuzzy cellular neural networks with distributed delay, Phys. lett. A 351, 48-52 (2006)
[13]Huang, T.; Li, C.; Zeng, Z.: A domain attraction criterion for interval fuzzy neural networks, Comput. math. Appl. 58, 508-513 (2009) · Zbl 1189.34096 · doi:10.1016/j.camwa.2009.03.112
[14]Gan, Q.; Xu, R.; Yang, P.: Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays and reaction–diffusion terms, Neural process. Lett. 32, No. 1, 45-57 (2010)
[15]Tan, M.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays, Neural process. Lett. 31, 147-157 (2010)
[16]Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.: Global asymptotic stability of BAM fuzzy cellular neural networks with time delay in the leakage term, discrete and unbounded distributed delays, Math. comput. Modelling 53, No. 5–6, 839-853 (2011) · Zbl 1217.34116 · doi:10.1016/j.mcm.2010.10.021
[17]Li, X.; Rakkiyappan, R.; Balasubramaniam, P.: Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations, J. franklin inst. 348, No. 2, 135-155 (2011)
[18]Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.: Existence and global asymptotic stability of fuzzy cellular neural networks with time delay in the leakage term and unbounded distributed delays, Circuits systems signal process (2011)
[19]Gopalsamy, K.: Leakage delays in BAM, J. math. Anal. appl. 325, 1117-1132 (2007) · Zbl 1116.34058 · doi:10.1016/j.jmaa.2006.02.039
[20]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[21]Sun, J.; Liu, G. P.; Chen, J.: Delay-dependent stability and stabilization of neutral time-delay systems, Internat. J. Robust nonlinear control 19, 1364-1375 (2009) · Zbl 1169.93399 · doi:10.1002/rnc.1384
[22]Wang, Z.; Ho, D. W. C.; Liu, X.: State estimation for delayed neural networks, IEEE trans. Neural netw. 16, No. 1, 279-284 (2005)
[23]He, Y.; Wang, Q.; Wu, M.; Lin, C.: Delay-dependent state estimation for delayed neural networks, IEEE trans. Neural netw. 17, No. 4, 1077-1081 (2006)
[24]Huang, H.; Feng, G.; Cao, J.: An LMI approach to delay-dependent state estimation for delayed neural networks, Neurocomputing 71, 2857-2867 (2008)
[25]Li, T.; Fei, S.; Zhu, Q.: Design of exponential state estimator for neural networks with distributed delays, Nonlinear anal. RWA 10, 1229-1242 (2009) · Zbl 1167.93318 · doi:10.1016/j.nonrwa.2007.10.017
[26]Wang, H.; Song, Q.: State estimation for neural networks with mixed interval time-varying delays, Neurocomputing 73, 1281-1288 (2010)
[27]Huang, H.; Feng, G.: State estimation of recurrent neural networks with time-varying delay: a novel delay partition approach, Neurocomputing 74, No. 5, 792-796 (2011)
[28]Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)
[29]Sanchez, E. N.; Perez, J. P.: Input-to-state stability (ISS) analysis for dynamic neural networks, IEEE trans. Circuits syst. I 46, 1395-1398 (1999) · Zbl 0956.68133 · doi:10.1109/81.802844
[30]Yang, T.; Yang, L. B.: Global stability of fuzzy cellular neural network, IEEE trans. Circuits syst. I 43, No. 10, 880-883 (1996)
[31]Liu, Z.; Zhang, H.; Wang, Z.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays, Neurocomputing 72, 1056-1064 (2009)
[32]K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of the 39th IEEE Conference on Decision and Control Sydney, Australia, 2000, pp. 2805–2810.