zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On controllability of fractional impulsive neutral infinite delay evolution integrodifferential systems in Banach spaces. (English) Zbl 1236.93024
Summary: In this work, controllability of fractional impulsive neutral evolution integrodifferential systems in a Banach space has been addressed. Sufficient conditions for the controllability are established using fractional calculus, resolvent operators and Krasnosel’skii’s fixed point theorem.
MSC:
93B05Controllability
93C30Control systems governed by other functional relations
47H10Fixed point theorems for nonlinear operators on topological linear spaces
34K37Functional-differential equations with fractional derivatives
References:
[1]Sakthivel, R.: Existence and controllability result for semilinear evolution integrodifferential systems, Math. comput. Modelling 41, 1005-1011 (2005) · Zbl 1129.93005 · doi:10.1016/j.mcm.2004.03.007
[2]Sakthivel, R.: Controllability result for nonlinear evolution integrodifferential systems, Appl. math. Lett. 17, 1015-1023 (2004) · Zbl 1072.93005 · doi:10.1016/j.aml.2004.07.003
[3]Sakthivel, R.: Controllability of nonlinear neutral evolution integrodifferential systems, J. math. Anal. appl. 275, 402-417 (2002) · Zbl 1010.93055 · doi:10.1016/S0022-247X(02)00375-X
[4]Balachandran, K.; Leelamani, A.; Kim, J. -H.: Controllability of neutral functional evolution integrodifferential systems with infinite delay, IMA J. Math. control inf. 25, 157-171 (2008) · Zbl 1146.93006 · doi:10.1093/imamci/dnm013
[5]Park, J. Y.: Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear anal.: hybrid syst. (2008)
[6]Chang, Y. K.: Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos solitons fractals 33, 1601-1609 (2007) · Zbl 1136.93006 · doi:10.1016/j.chaos.2006.03.006
[7]Balachandran, K.; Park, J. Y.: Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear anal. Hybrid syst. (2009)
[8]Bonilla, B.; Rivero, M.; Rodriguez-Germa, L.; Trujillo, J. J.: Fractional differential equations as alternative models to nonlinear differential equations, Appl. math. Comput. 187, 79-88 (2007) · Zbl 1120.34323 · doi:10.1016/j.amc.2006.08.105
[9]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[10]Smart, D. R.: Fixed point theorems, (1980)