zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sliding mode control of switched hybrid systems with stochastic perturbation. (English) Zbl 1236.93038
Summary: This paper is concerned with the sliding mode control (SMC) of a continuous-time switched stochastic system. A sufficient condition for the existence of reduced-order sliding mode dynamics is derived and an explicit parametrization of the desired sliding surface is also given. Then, a sliding mode controller is then synthesized for reaching motion. Moreover, the observer-based SMC problem is also investigated. Some sufficient conditions are established for the existence and the solvability of the desired observer and the observer-based sliding mode controller is synthesized. Finally, numerical examples are provided to illustrate the effectiveness of the proposed theory.
MSC:
93B12Variable structure systems
93C30Control systems governed by other functional relations
References:
[1]Daafouz, J.; Riedinger, P.; Iung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach, IEEE trans. Automat. control 47, No. 11, 1883-1887 (2002)
[2]Shi, P.; Boukas, E. K.; Agarwal, R. K.: Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay, IEEE trans. Automat. control 44, No. 11, 2139-2144 (1999) · Zbl 1078.93575 · doi:10.1109/9.802932
[3]Hespanha, J. P.; Morse, A. S.: Switching between stabilizing controllers, Automatica 38, No. 11, 1905-1917 (2002) · Zbl 1011.93533 · doi:10.1016/S0005-1098(02)00139-5
[4]Ishii, H.; Francis, B. A.: Stabilizing a linear system by switching control with Dwell time, IEEE trans. Automat. control 47, No. 12, 1962-1973 (2002)
[5]Wang, Z.; Lam, J.; Liu, X. H.: Robust filtering for discrete-time Markovian jump delay systems, IEEE trans. Signal process. Lett. 11, No. 8, 659-662 (2004)
[6]Zhai, G.; Lin, H.; Kim, Y.; Imae, J.; Kobayashi, T.: 𝕃2 gain analysis for switched systems with continuous-time and discrete-time subsystems, Internat. J. Control 78, No. 15, 1198-1205 (2005) · Zbl 1088.93010 · doi:10.1080/00207170500274966
[7]Gao, H.; Lam, J.; Wang, C.: Model simplification for switched hybrid systems, Systems control lett. 55, No. 12, 1015-1021 (2006) · Zbl 1120.93311 · doi:10.1016/j.sysconle.2006.06.014
[8]Wu, L.; Zheng, W. X.: Weighted 𝕙 model reduction for switched hybrid systems with time-varying delay, Automatica 45, No. 1, 186-193 (2009) · Zbl 1154.93326 · doi:10.1016/j.automatica.2008.06.024
[9]Morse, A. S.: Supervisory control of families of linear set-point controllers part I: Exact matching, IEEE trans. Automat. control 41, No. 10, 1413-1431 (1996) · Zbl 0872.93009 · doi:10.1109/9.539424
[10]J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell time, in: Proc. 38th Conf. Decision Control, Phoenix, AZ, 1999, pp. 2655–2660.
[11]Wu, L.; Lam, J.: Sliding mode control of switched hybrid systems with time-varying delay, Internat. J. Adapt. control signal process 22, No. 10, 909-931 (2008)
[12]Lu, C. Y.; Tsai, J. S. H.; Jong, G. J.; Su, T. J.: An LMI based approach for robust stabilization of uncertain stochastic systems with time-varying delays, IEEE trans. Automat. control 48, No. 2, 286-289 (2003)
[13]Wang, Z.; Qiao, H.; Burnham, K. J.: On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters, IEEE trans. Automat. control 47, No. 4, 640-646 (2002)
[14]Xu, S.; Chen, T.: Robust 𝕙 control for uncertain stochastic systems with state delay, IEEE trans. Automat. control 47, No. 12, 2089-2094 (2002)
[15]Niu, Y.; Ho, D. W. C.; Lam, J.: Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica 41, 873-880 (2005) · Zbl 1093.93027 · doi:10.1016/j.automatica.2004.11.035
[16]Xu, S.; Chen, T.: 𝕙 output feedback control for uncertain stochastic systems with time-varying delays, Automatica 40, No. 12, 2091-2098 (2004) · Zbl 1073.93022 · doi:10.1016/j.automatica.2004.06.018
[17]Wu, L.; Zheng, W. X.: Passivity-based sliding mode control of uncertain singular time-delay systems, Automatica 45, No. 9, 2120-2127 (2009) · Zbl 1175.93065 · doi:10.1016/j.automatica.2009.05.014
[18]Xia, Y.; Jia, Y.: Robust sliding-mode control for uncertain time-delay systems: an LMI approach, IEEE trans. Automat. control 48, No. 6, 1086-1092 (2003)
[19]Niu, Y.; Ho, D. W. C.: Robust observer design for itô stochastic time-delay systems via sliding mode control, Systems control lett. 55, 781-793 (2006) · Zbl 1100.93047 · doi:10.1016/j.sysconle.2006.03.007
[20]Shi, P.; Xia, Y.; Liu, G. P.; Rees, D.: On designing of sliding-mode control for stochastic jump systems, IEEE trans. Automat. control 51, No. 1, 97-103 (2006)
[21]Niu, Y.; Ho, D. W. C.; Wang, X.: Sliding mode control for itô stochastic systems with Markovian switching, Automatica 43, 1784-1790 (2007) · Zbl 1119.93063 · doi:10.1016/j.automatica.2007.02.023
[22]Xu, S.; Chen, T.: Robust 𝕙 control for uncertain discrete-time stochastic bilinear systems with Markovian switching, Internat. J. Robust nonlinear control 15, No. 5, 201-217 (2005) · Zbl 1078.93025 · doi:10.1002/rnc.981
[23]Mao, X.: Stochastic differential equations and applications, (2007)
[24]Mao, X.; Yuan, C.: Stochastic differential equations with Markovian switching, (2006) · Zbl 1109.60043 · doi:10.1155/JAMSA/2006/59032
[25]Liberzon, D.: Switching in systems and control, (2003)
[26]Li, X.; De Souza, C.: Criteria for robust stability and stabilization of uncertain linear systems with state delay, Automatica 33, No. 9, 1657-1662 (1997)
[27]Wu, L.; Ho, D. W. C.: Reduced-order 𝕃2-l filtering of switched nonlinear stochastic systems, IET control theory appl. 3, No. 5, 493-508 (2009)
[28]Utkin, V.: Sliding modes in control optimization, (1992)
[29]El Ghaoui, L.; Oustry, F.; Rami, M. Ait: A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE trans. Automat. control 42, No. 8, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250
[30]Kolmanovskii, V.; Myshkis, A.: Applied theory of functional differential equations, (1992)
[31]Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM rev. 43, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302