zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamics of duopoly game with heterogeneous players: a further analysis of the output model. (English) Zbl 1237.91168
Summary: In this paper, an output duopoly game with heterogeneous players is analyzed in order to study the influence of players’ different behavior on the dynamics of game. Two types of players are considered, which are bounded rationality expectation and naïve expectation. Player with naïve expectation chooses an output level based on the market price of previous period, while player with bounded rationality adjusts his output adaptively, following a bounded rationality adjustment process based on a local estimate of the marginal profit of previous period. The game model is also based on the assumption that demand and cost function are nonlinear. The existence of equilibrium points and its local stability of the output game are investigated. The complex dynamics, bifurcations and chaos are displayed by numerical experiment. Numerical methods also show that the long-run average profit achieved by player adopting naïve expectation is higher than that achieved by player using self adaptive adjustment measure, although players use similar production methods.
MSC:
91B69Heterogeneous agent models in economics
91B55Economic dynamics
91A25Dynamic games
References:
[1]Gibbons, R.: A primer in game theory, (1992) · Zbl 0759.90106
[2]Agiza, H. N.; Elsadany, A. A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl. math. Comput. 149, 843-860 (2004) · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[3]Cournot, A.: Researches into the mathematical principles of the theory of wealth, (1838)
[4]Agiza, H. N.; Hegazi, A. S.; Elsadany, A. A.: The dynamics of bowley’s model with bounded rationality, Chaos soliton fract. 12, 1705-1717 (2001) · Zbl 1036.91004 · doi:10.1016/S0960-0779(00)00021-7
[5]Agiza, H. N.; Hegazi, A. S.; Elsadany, A. A.: Complex dynamics and synchronization of a duopoly game with bounded rationality, Math. comput. Simulat. 58, 133-146 (2002) · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
[6]Agiza, H. N.; Elsadany, A. A.: Nonlinear dynamics in the cournot duopoly game with heterogeneous players, Physics A 320, 512-524 (2003) · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[7]Ahmed, E.; Agiza, H. N.: Dynamics of a cournot game with n-competitors, Chaos soliton fract. 9, 1513-1517 (1998) · Zbl 0952.91004 · doi:10.1016/S0960-0779(97)00131-8
[8]Ahmed, E.; Agiza, H. N.; Hassan, S. Z.: On modifications of puu’s dynamical duopoly, Chaos soliton fract. 11, 1025-1028 (2000) · Zbl 0955.91045 · doi:10.1016/S0960-0779(98)00322-1
[9]Hassan, S. Z.: On delayed dynamical duopoly, Appl. math. Comput. 151, 275-286 (2004) · Zbl 1088.91028 · doi:10.1016/S0096-3003(03)00340-0
[10]Kopel, M.: Simple and complex adjustment dynamics in cournot duopoly model, Chaos soliton fract. 7, 2031-2048 (1996) · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7
[11]Léonard, D.; Nishimura, K.: Nonlinear dynamics in the cournot model without full information, Ann. oper. Res. 89, 165-173 (1999) · Zbl 0939.91096 · doi:10.1023/A:1018919522127
[12]Puu, T.: Complex dynamics with three oligopolists, Chaos soliton fract. 7, No. 12, 2075-2081 (1996)
[13]Puu, T.: Attractors, bifurcations and chaos: nonlinear phenomena in economics, (2000)
[14]Yassen, M. T.; Agiza, H. N.: Analysis of a duopoly game with delayed bounded rationality, Appl. math. Comput. 138, 387-402 (2003) · Zbl 1102.91021 · doi:10.1016/S0096-3003(02)00143-1
[15]Zhang, J. X.; Da, Q. L.; Wang, Y. H.: Analysis of nonlinear duopoly game with heterogeneous players, Econ. modell. 24, No. 1, 138-148 (2007)
[16]Puu, T.: Chaos in duopoly pricing, Chaos soliton fract. 1, 573-581 (1991)
[17]Baum, C. F.; Barkoulas, J. T.; Caglayan, M.: Nonlinear adjustment to purchasing power parity in the post-bretton Woods era, J. int. Money finance 20, 379-399 (2001)
[18]Dolado, J. J.; Dolores, R. M.; Naveira, M.: Are monetary-policy reaction functions asymmetric?: the role of nonlinearity in the Phillips curve, Eur. econ. Rev. 49, 485-503 (2005)
[19]Greiner, A.; Kauermann, G.: A sustainability of US public debt: estimating smoothing spline regressions, Econ. modell. 24, 350-364 (2007)
[20]Krusell, P.; Mukoyama, T.; Rogerson, R.; Sahin, A.: Aggregate implications of indivisible labor, incomplete markets, and labor market frictions, J. monetary econ. 55, 961-979 (2008)
[21]Makoto, A.: Measuring consumer, nonlinear brand choice response to price, J. retailing 74, No. 4, 541-568 (1998)
[22]Redmondp, W. H.: When technologies compete: the role of externalities in nonlinear market response, J. prod. Innov. manage. 8, No. 3, 170-183 (1991)
[23]Ruth, M.; Cleveland, C. J.: Nonlinear dynamic simulation of optimal depletion of crude oil in the lower 48 united states, Comput. env. Urban syst. 17, No. 5, 425-435 (1993)
[24]Borck, W. A.; Hommes, C. H.: Heterogenous beliefs and routes to chaos in a simple asset pricing model, J. econ. Dyn. control 22, 1235-1274 (1998) · Zbl 0913.90042 · doi:10.1016/S0165-1889(98)00011-6
[25]Den-Haan, W. J.: The importance of the number of different agents in a heterogeneous asset-pricing model, J. econ. Dyn. control 25, 721-746 (2001) · Zbl 0963.91051 · doi:10.1016/S0165-1889(00)00038-5
[26]Ding, Z. W.; Hang, Q. L.; Tian, L. X.: Analysis of the dynamics of cournot team-game with heterogeneous players, Appl. math. Comput. 215, 1098-1105 (2009) · Zbl 1187.91077 · doi:10.1016/j.amc.2009.06.046
[27]Dubiel-Teleszynski, T.: Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale, Commun. nonlinear sci. Numer. simul. 16, 296-308 (2011) · Zbl 1221.91037 · doi:10.1016/j.cnsns.2010.03.002
[28]Onozaki, T.; Sieg, G.; Yokoo, M.: Stability, chaos and multiple attractors: a single agent makes a difference, J. econ. Dyn. control 27, No. 10, 1917-1938 (2003) · Zbl 1178.91105 · doi:10.1016/S0165-1889(02)00090-8
[29]Du, J. G.; Huang, T. W.: New results on stable region of Nash equilibrium of output game model, Appl. math. Comput. 192, No. 1, 12-19 (2007) · Zbl 1193.91036 · doi:10.1016/j.amc.2007.02.155
[30]Du, J. G.; Huang, T. W.; Sheng, Z. H.: Analysis of decision-making in economic chaos control, Nonlinear anal. Real world appl. 10, 2493-2501 (2009) · Zbl 1163.91331 · doi:10.1016/j.nonrwa.2008.05.007
[31]Huang, W. H.: Caution implies profit, J. econ. Behav. organ. 27, 257-277 (1995)
[32]Henon, M.: A two dimensional mapping with a strange attractor, Commun. math. Phys. 50, 69-77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556