zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improved stability criteria for time-varying delayed T-S fuzzy systems via delay partitioning approach. (English) Zbl 1237.93156
Summary: This paper focuses on the stability analysis for uncertain Takagi–Sugeno (T–S) fuzzy systems with interval time-varying delay. The uncertainties of system parameter matrices are assumed to be time-varying and norm-bounded. Some new Lyapunov–Krasovskii functionals (LKFs) are constructed by nonuniformly dividing the whole delay interval into multiple segments and choosing different Lyapunov functionals to different segments in the LKFs. By employing these LKFs, some new delay-derivative-dependent stability criteria are established for the nominal and uncertain T–S fuzzy systems in a convex way. These stability criteria are derived that depend on both the upper and lower bounds of the time derivative of the delay. By employing the new delay partitioning approach, the obtained stability criteria are stated in terms of Linear Matrix Inequalities (LMIs). They are equivalent or less conservative while involving less decision variables than the existing results. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.
MSC:
93D20Asymptotic stability of control systems
93C42Fuzzy control systems
References:
[1]Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control, IEEE transactions on systems, man, and cybernetics 15, 116-132 (1985) · Zbl 0576.93021
[2]Teixeira, M. C.; Zak, S. H.: Stabilizing controller design for uncertain nonlinear systems using fuzzy models, IEEE transactions on fuzzy systems 7, 133-144 (1999)
[3]Chen, B. S.; Tseng, C. S.; Uang, H. J.: Mixed H2/H fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach, IEEE transactions on fuzzy systems 8, 249-265 (2000)
[4]Akar, M.; Ozguner, U.: Decentralized techniques for the analysis and control of Takagi – sugeno fuzzy systems, IEEE transactions on fuzzy systems 8, 691-704 (2000)
[5]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)
[6]Lin, C.; Wang, Q. G.; Lee, T. H.: Delay-dependent LMI conditions for stability and stabilization of T – S fuzzy systems with bounded time-delay, Fuzzy sets and systems 157, No. 9, 1229-1247 (2006) · Zbl 1090.93024 · doi:10.1016/j.fss.2005.10.001
[7]Wu, H. N.; Li, H. X.: New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay, IEEE transactions on fuzzy systems 15, 482-493 (2007)
[8]Lien, C. H.; Yu, K. W.; Chen, W. D.; Wan, Z. L.; Chung, Y. J.: Stability criteria for uncertain Takagi – sugeno fuzzy systems with interval time-varying delay, IET control theory and applications 1, 764-769 (2007)
[9]Chen, B.; Liu, X. P.; Tong, S. C.: New delay-dependent stabilization conditions of T – S systems with constant delay, Fuzzy sets and systems 158, 2209-2224 (2007) · Zbl 1122.93048 · doi:10.1016/j.fss.2007.02.018
[10]Yoneyama, J.: New delay-dependent approach to robust stability and stabilization for Takagi – sugeno fuzzy time-delay systems, Fuzzy sets and systems 158, 2225-2337 (2007) · Zbl 1122.93050 · doi:10.1016/j.fss.2007.03.022
[11]Peng, C.; Tian, Y. C.; Tian, E. G.: Improved delay-dependent robust stabilization conditions of uncertain T – S fuzzy systems with time-varying delay, Fuzzy sets and systems 159, 2713-2729 (2008) · Zbl 1170.93344 · doi:10.1016/j.fss.2008.03.009
[12]Li, L.; Liu, X.; Chai, T.: New approaches on H control of T – S fuzzy systems with interval time-varying delay, Fuzzy sets and systems 160, 1669-1688 (2009) · Zbl 1175.93127 · doi:10.1016/j.fss.2008.11.021
[13]Zhao, Y.; Gao, H.; Lam, J.; Du, B.: Stability and stabilization of delayed T – S fuzzy systems: a delay partitioning approach, IEEE transactions on fuzzy systems 17, 750-762 (2009)
[14]Liu, F.; Wu, M.; He, Y.; Yokoyama, R.: New delay-dependent stability criteria for T – S fuzzy systems with time-varying delay, Fuzzy sets and systems 161, 2033-2042 (2010) · Zbl 1194.93117 · doi:10.1016/j.fss.2009.12.014
[15]J.Y. An, G.L. Wen, W. Xu, Improved results on fuzzy Hnbsp; filter design for T – S fuzzy systems, Discrete Dynamics in Nature and Society 2010, 21 pp., doi: http://dx.doi.org/10.1155/2010/392915.
[16]Yue, D.; Han, Q. L.; Lam, J.: Network-based robust H control of systems with uncertainty, Automatica 41, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[17]F. Gouaisbaut, D. Peaucelle, Delay-dependent stability analysis of linear time delay systems, in: Proceedings of the IFAC TDC, 2006, pp. 5 – 7.
[18]Y. Ariba, F. Gouaisbaut, Delay-dependent stability analysis of linear systems with time-varying delay, in: Proceedings of the IEEE CDC, 2007, pp. 2053 – 2058.
[19]Zhang, X. -M.; Han, Q. -L.: A delay decomposition approach to delay-dependent stability for linear systems with time-varying delays, International journal of robust nonlinear control 19, 1922-1930 (2009) · Zbl 1185.93106 · doi:10.1002/rnc.1413
[20]Zhang, X. -M.; Han, Q. -L.: New Lyapunov – Krasovskiĭ functionals for global asymptotic stability of delayed neural networks, IEEE transactions on neural networks 20, 533-539 (2009)
[21]Boyd, S.; Ghaoui, L. E.; Feron, E.: Linear matrix inequality in system and control theory, SIAM studies in applied mathematics, (1994)
[22]Petersen, I. R.; Hollot, C. V.: A Riccati equation approach to the stabilization of uncertain linear systems, Automatica 22, 397-411 (1986) · Zbl 0602.93055 · doi:10.1016/0005-1098(86)90045-2
[23]Shao, H.: New delay-dependent criteria for systems with interval delay, Automatica 45, 744-749 (2009) · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010
[24]He, Y.; Wang, Q. -G.; Xie, L.; Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE transactions on automatic control 52, 293-299 (2007)