zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new method for solving fuzzy linear differential equations. (English) Zbl 1238.34005
Authors’ abstract: A novel operator method is proposed for solving fuzzy linear differential equations under the assumption of strongly generalized differentiability. To this end, the equivalent integral form of the original problem is obtained. Then by using its lower and upper functions, the solutions in parametric forms are determined. The proposed method is illustrated with numerical examples.
MSC:
34A07Fuzzy differential equations
34A30Linear ODE and systems, general
References:
[1]Abbasbandy S, Allahviranloo T, Lopez-Pouso O, Nieto JJ (2004) Numerical methods for fuzzy differential inclusions. Comput Math Appl 48: 1633–1641 · Zbl 1074.65072 · doi:10.1016/j.camwa.2004.03.009
[2]Allahviranloo T, Ahmady N, Ahmady E (2007) Numerical solution of fuzzy differential equations by predictor-corrector method. Inf Sci 177: 1633–1647 · Zbl 1183.65090 · doi:10.1016/j.ins.2006.09.015
[3]Allahviranloo T, Barkhordari Ahmadi M (2010) Fuzzy Laplace transforms. Soft Comput 14: 235–243 · Zbl 1187.44001 · doi:10.1007/s00500-008-0397-6
[4]Allahviranloo T, Kiani NA, Barkhordari M (2009) Toward the existence and uniqueness of solutions of second-order fuzzy differental equations. Inf Sci 179: 1207–1215 · Zbl 1171.34301 · doi:10.1016/j.ins.2008.11.004
[5]Allahviranloo T, Kiani NA, Motamedi N (2009) Solving fuzzy differential equations by differential transformation method. Inf Sci 179: 956–966 · Zbl 1160.65322 · doi:10.1016/j.ins.2008.11.016
[6]Allahviranloo T, Salahshour S (2010) Euler method for solving hybrid fuzzy differential equation. Soft Comput. doi: 10.1007/s00500-010-0659-y
[7]Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal 72: 2859–2862 · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[8]Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151: 581–599 · Zbl 1061.26024 · doi:10.1016/j.fss.2004.08.001
[9]Bede B, Rudas IJ, Bencsik AL (2006) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177: 1648–1662 · Zbl 1119.34003 · doi:10.1016/j.ins.2006.08.021
[10]Chalco-Cano Y, Roman-Flores H (2006) On new solutions of fuzzy differential equations. Chaos Solitons Fractals 38: 112–119 · Zbl 1142.34309 · doi:10.1016/j.chaos.2006.10.043
[11]Diamond P, Kloeden P (1994) Metric spaces of fuzzy sets. World Scientific, Singapore
[12]Georgiou DN, Nieto JJ, Rodriguez R (2005) Initial value problems for higher-order fuzzy differential equations. Nonlinear Anal 63: 587–600 · Zbl 1091.34003 · doi:10.1016/j.na.2005.05.020
[13]Khastan A, Bahrami F, Ivaz K (2010) New results on multiple solutions for Nth-order fuzzy differential equation under generalized differentiability. Boundary Value Problem (Hindawi Publishing Corporation). doi: 10.1155/2009/395714
[14]Khastan A, Nieto JJ (2010) A boundary value problem for second order fuzzy differential equations. Nonlinear Anal 72: 3583–3593 · Zbl 1193.34004 · doi:10.1016/j.na.2009.12.038
[15]Nieto JJ, Rodriguez-Lopez R (2006) Hybrid metric dynamical systems with impulses. Nonlinear Anal 64: 368–380 · Zbl 1094.34007 · doi:10.1016/j.na.2005.05.068
[16]Nieto JJ, Rodriguez-Lopez R, Franco D (2006) Linear first-order fuzzy differential equations. Int J Uncertain Fuzziness Knowledge-Based Syst 14: 687–709 · Zbl 1116.34005 · doi:10.1142/S0218488506004278
[17]Nieto JJ, Rodriguez-Lopez R, Georgiou DN (2008) Fuzzy differential systems under generalized metric spaces approach. Dyn Syst Appl 17: 1–24
[18]Puri ML, Ralescu D (1986) Fuzzy random variables. J Math Anal Appl 114: 409–422 · Zbl 0592.60004 · doi:10.1016/0022-247X(86)90093-4
[19]Puri ML, Ralescu D (1983) Differential for fuzzy function. J Math Anal Appl 91: 552–558 · Zbl 0528.54009 · doi:10.1016/0022-247X(83)90169-5
[20]Wu HC (1999) The improper fuzzy Riemann integral and its numerical integration. Inf Sci 111: 109–137 · Zbl 0934.26014 · doi:10.1016/S0020-0255(98)00016-4
[21]Wu HC (2000) The fuzzy Riemann integral and its numerical integration. Fuzzy Set Syst 110: 1–25 · Zbl 0941.26014 · doi:10.1016/S0165-0114(97)00353-9
[22]Xu J, Liao Z, Nieto JJ (2010) A class of linear differential dynamical systems with fuzzy matrices. J Math Anal Appl 368: 54–68 · Zbl 1193.37025 · doi:10.1016/j.jmaa.2009.12.053
[23]Zimmermann HJ (1991) Fuzzy set theory and its applications. Kluwer, Dordrecht