zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Laplace transform and fractional differential equations. (English) Zbl 1238.34013
The authors establish a sufficient condition for solving the constant coefficient matrix fractional differential equation by using Laplace transform. Further, the authors provide a solution representation for the matrix fractional differential equation using the Mittag-Leffler function.
MSC:
34A08Fractional differential equations
34A25Analytical theory of ODE (series, transformations, transforms, operational calculus, etc.)
References:
[1]Podlubny, I.: Fractional differential equations, (1999)
[2]Miller, K. S.; Boss, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[3]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[4]Friedrich, C.: Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheologica acta. 30, 151-158 (1991)
[5]Chen, Y. Q.; Moore, K. L.: Analytical stability bounded for a class of delayed fractional-order dynamic systems, Nonlinear dynam. 29, 191-200 (2002) · Zbl 1020.34064 · doi:10.1023/A:1016591006562
[6]Ahmad, B.; Sivasundaram, S.: Existence results for nonlinear implusive hybrid boundary value problems involving fractional differential equations, Nonlinear anal. Hybrid syst. 3, No. 3, 251-258 (2009) · Zbl 1193.34056 · doi:10.1016/j.nahs.2009.01.008
[7]Odibat, Z. M.: Analytic study on linear systems of fractional differential equations, Comput. math. Appl. 59, No. 3, 1171-1183 (2010) · Zbl 1189.34017 · doi:10.1016/j.camwa.2009.06.035
[8]Lin, W.: Global existence and chaos control of fractional differential equations, J. math. Anal. appl. 332, 709-726 (2007) · Zbl 1113.37016 · doi:10.1016/j.jmaa.2006.10.040
[9]Wen, X. J.; Wu, Zh.M.; Lu, J. G.: Stability analysis of a class of nonlinear fractional-order systems, IEEE trans. Circuits syst. II, express. Briefs 55, No. 11, 1178-1182 (2008)
[10]E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002
[11]Henry, D.: Geometric theory of semilinear parabolic equations, Lecture notes in math. 840 (1981) · Zbl 0456.35001