zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
From Laurent series to exact meromorphic solutions: The Kawahara equation. (English) Zbl 1238.34020
Summary: Meromorphic traveling wave solutions of the Kawahara equation and the modified Kawahara equations are studied. An algorithm for constructing meromorphic solutions in explicit form is described. The classification problem for meromorphic solutions of autonomous nonlinear ordinary differential equations is discussed.

MSC:
34A34Nonlinear ODE and systems, general
34M05Entire and meromorphic solutions (ODE)
34C25Periodic solutions of ODE
33E05Elliptic functions and integrals
References:
[1]Kawahara, T.: J. phys. Soc. jpn., J. phys. Soc. jpn. 33, No. 1, 260 (1972)
[2]Marchenko, A. V.: Journal of applied mathematics and mechanics, Journal of applied mathematics and mechanics 52, No. 2, 180 (1988)
[3]Kano, K.; Nakayama, T.: J. phys. Soc. jpn., J. phys. Soc. jpn. 50, 361 (1981)
[4]Kudryashov, N. A.: J. appl. Math. mech., J. appl. Math. mech. 54, No. 3, 372 (1990)
[5]Parkes, E. J.; Duffy, B. R.: Comput. phys. Commun., Comput. phys. Commun. 98, 288 (1996)
[6]Parkes, E. J.; Duffy, B. R.; Abbott, P. C.: Phys. lett. A, Phys. lett. A 295, 280 (2002)
[7]Bagderina, Yu.Yu.: J. appl. Math. mech., J. appl. Math. mech. 72, 180 (2008)
[8]Biswas, A.: Appl. math. Lett., Appl. math. Lett. 22, 208 (2009)
[9]Natali, F.: Appl. math. Lett., Appl. math. Lett. 23, 591 (2010)
[10]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 155, 269 (1991)
[11]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 147, 287 (1990)
[12]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 169, 237 (1992)
[13]Malfliet, W.; Hereman, W.: Phys. scripta, Phys. scripta 54, 563 (1996)
[14]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 342, 99 (2005)
[15]Kudryashov, N. A.: Chaos, solitons and fractals, Chaos, solitons and fractals 24, 1217 (2005)
[16]Kudryashov, N. A.; Demina, M. V.: Chaos, solitons and fractals, Chaos, solitons and fractals 33, 1480 (2007)
[17]Kudryashov, N. A.; Loguinova, N. B.: Applied mathematics and computation, Applied mathematics and computation 205, 396 (2008)
[18]Kudryashov, N. A.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 14, 1891 (2009)
[19]Kudryashov, N. A.; Loguinova, N. B.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 14, 1881 (2009)
[20]Kudryashov, N. A.: Nonlinear sci. Numer. simul., Nonlinear sci. Numer. simul. 14, 3507 (2009)
[21]Musette, M.; Conte, R.: Physica D, Physica D 181, 70 (2003)
[22]Hone, A. N. W.: Physica D, Physica D 205, 292 (2005)
[23]Vernov, S. Yu.: Theoretical and mathematical physics, Theoretical and mathematical physics 146, No. 1, 131 (2006)
[24]Eremenko, A.: J. math. Phys. anal. Geom., J. math. Phys. anal. Geom. 2, No. 3, 278 (2006)
[25]M.V. Demina, N.A. Kudryashov, Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations, Commun. Nonlinear Sci. Numer. Simul. (2010), in press, doi:10.1016/j.cnsns.2010.06.035.