zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Centers of quasi-homogeneous polynomial planar systems. (English) Zbl 1238.34052
Summary: We determine the centers of quasi-homogeneous polynomial planar vector fields of degree 0,1,2,3 and 4. In addition, in every case we make a study of the reversibility and the analytical integrability of each one of the above centers. We find polynomial centers which are neither orbitally reversible nor analytically integrable, this is a new scenario in respect to the one of non-degenerate and nilpotent centers.
34C05Location of integral curves, singular points, limit cycles (ODE)
34C07Theory of limit cycles of polynomial and analytic vector fields
37C99Smooth dynamical systems
[1]Dulac, H.: Détermination et integration d’une certain classe d’équations différentielle ayant par pint singulier un centre, Bull. sci. Math. sér. 32, No. 2, 230-252 (1908) · Zbl 39.0374.01
[2]Bautin, N. N.: On the number of the limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. sb. 30, 181-196 (1952) · Zbl 0059.08201
[3]Kapteyn, W.: New investigation on the midpoints of integral of differential equations of the first degree, Nederl. akad. Wetensch. verslag afd. Natuurk. konokl. 20, 1354-1365 (1912)
[4]Kapteyn, W.: On the midpoints of integral curves of differential equations of the first degree, Nederl. akad. Wetensch. verslag afd. Natuurk. konokl. Nederland, 1446-1457 (1911)
[5]Zoladek, H.: Quadratic system with center and their perturbations, J. differential equations 109, 223-273 (1994)
[6]Sibirskii, K. S.: On the number of limit cycles on the neighborhood of a singular point, Differ. equ. 1, 36-47 (1965) · Zbl 0196.35702
[7]Zoladek, H.: On certain generalization of bautin’s theorem, Nonlinearity, 268-278 (1994)
[8]Giné, J.: On some of problems in planar differential systems and Hilbert’s 16th problem, Chaos solitons fractals 31, 1118-1134 (2007) · Zbl 1149.34023 · doi:10.1016/j.chaos.2005.10.057
[9]Berthier, M.; Moussu, R.: Reversibilité ét classification des centres nilpotents, Ann. inst. Fourier (Grenoble) 44, 465-494 (1994) · Zbl 0803.34005 · doi:10.5802/aif.1406 · doi:numdam:AIF_1994__44_2_465_0
[10]Moussu, R.: Symétrie et forme normale des centres et foyers dégénerés., Ergodic theory dynam. Systems 2, 241-251 (1982) · Zbl 0509.34027 · doi:10.1017/S0143385700001553
[11]Giacomini, H.; Giné, J.; Llibre, J.: The problem of distinguish between a center or a focus for nilpotents and degenerate analytical system, J. differential equations 227, No. 2, 406-426 (2006) · Zbl 1111.34026 · doi:10.1016/j.jde.2006.03.012
[12]Gassull, A.; Torregrosa, J.: Center problem for several differential equations via cherka’s method, J. math. Anal. appl. 228, 322-342 (1998) · Zbl 0926.34022 · doi:10.1006/jmaa.1998.6112
[13]Sadovskii, A. P.: Problem of distinguishing a center and a focus for a system with a nonvanishing linear part, Differ. uravn. 12, No. 7, 1238-1246 (1976) · Zbl 0366.34019
[14]Algaba, A.; García, C.; Reyes, M.: The center problem for a family of system of differential equations having a nilpotent singular point, J. math. Anal. appl. 340, 32-43 (2008) · Zbl 1156.34031 · doi:10.1016/j.jmaa.2007.07.043
[15]Gassull, A.; Llibre, J.; Mañosa, V.; Mañosas, F.: The focus-center problem for a type of degenerate system, Nonlinearity 13, 699-730 (2000) · Zbl 0962.34067 · doi:10.1088/0951-7715/13/3/311
[16]Algaba, A.; García, C.; Teixeira, M. A.: Reversibility and quasi-homogeneous normal form of vector fields, Nonlinear anal. 73, No. 2, 510-525 (2010) · Zbl 1202.34069 · doi:10.1016/j.na.2010.03.046
[17]Teixeira, M. A.; Yang, J.: The center-focus problem and reversibility, J. differential equations 174, 237-251 (2001) · Zbl 0994.34020 · doi:10.1006/jdeq.2000.3931
[18]Chavarriga, J.; García, I.; Giné, J.: Integrability of centers perturbed by quasi-homogeneous polynomials, J. math. Anal. appl. 210, 722-730 (1997) · Zbl 0876.34008 · doi:10.1006/jmaa.1997.5402
[19]Chavarriga, J.; Giacomini, H.; Giné, J.; Llibre, J.: Local analytic integrability for nilpotent centers, Ergodic theory dynam. Systems 23, 417-428 (2003) · Zbl 1037.34025 · doi:10.1017/S014338570200127X
[20]Algaba, A.; Gamero, E.; García, C.: The integrability problem for a class of planar systems, Nonlinearity 22, 395-420 (2009) · Zbl 1165.34023 · doi:10.1088/0951-7715/22/2/009
[21]Cairó, L.; Llibre, J.: Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. math. Anal. appl. 331, 1284-1298 (2007) · Zbl 1124.34015 · doi:10.1016/j.jmaa.2006.09.066
[22]Llibre, J.; Pessoa, C.: On the centers of the weight-homogeneous polynomial vector fields on the plane, J. math. Anal. appl. 359, 722-730 (2009) · Zbl 1180.34030 · doi:10.1016/j.jmaa.2009.06.036
[23]Llibre, J.; Zhang, X.: Polynomial first integrals for quasi-homogeneous polynomial differential system, Nonlinearity 15, 1269-1280 (2002) · Zbl 1024.34001 · doi:10.1088/0951-7715/15/4/313
[24]Poincaré, H.: Mémoire sur LES courbes dífinies par LES équations differentielles, J. math. Pures appl. 1, No. 4, 167-244 (1885) · Zbl 17.0680.01
[25]Poincaré, H.: Mémoire sur LES courbes dífinies par LES équations differentielles, Oeuvres de henri Poincaré, 95-114 (1951)
[26]Algaba, A.; García, C.; Reyes, M.: Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky mountain J. Math. 41, No. 1, 1-22 (2011) · Zbl 1213.37093 · doi:10.1216/RMJ-2011-41-1-1
[27]Algaba, A.; Freire, E.; Gamero, E.; García, C.: Monodromy, center-focus and integrability problem for quasi-homogeneous polynomial systems, Nonlinear anal. 72, 1726-1736 (2010) · Zbl 1192.34035 · doi:10.1016/j.na.2009.09.012
[28]Montgomery, D.; Zippin, L.: Topological transformation groups, (1955) · Zbl 0068.01904